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ABSTRACT 

The Department of Defense and the intelligence community rely on space systems for a 

broad spectrum of services. These systems operate in highly constrained environments (in 

terms of space, weight and power), making virtualization and resource sharing a desirable 

approach. Agencies are actively exploring new architectures, such as those employing 

virtualization, to support their growing space mission. In this thesis, we review how 

virtualization architectures claim to support the real-time requirements of their guests. 

We survey real-time systems and virtualization architectures proposed for use in space 

systems. Further, we investigate the behaviors of virtualized operating systems using a 

method of remote network-based fingerprinting with TCP timestamps. Our work 

provides insights into how guests, both general purpose and real-time, behave in 

virtualized environments. Our survey work and experimental analysis aim to further 

understanding of how virtualization can be securely incorporated into space systems. 
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I. INTRODUCTION 

Virtualization has proven itself a viable approach to resource sharing in terrestrial 

systems but its use in space systems is a relatively new idea (Cudmore, 2013). Space 

systems have a number of unique needs, such as space, weight and power (SWaP) 

constraints and real-time requirements (Kang & Kim, 2014). There are many proposed 

virtualization architectures for space, but their ability to support systems with real-time 

requirements needs to be better understood. The role of virtualization in the context of 

real-time requirements is the focus of this thesis. In particular, we survey the design, 

implementation and performance of real-time operating systems and virtualization 

platforms proposed for space. We attempt to understand how these virtualization 

architectures claim to support the real-time requirements of the systems they host. We 

review the security properties of these systems, such as how process isolation is achieved. 

We also consider a practical aspect to security that has received little prior attention: we 

extend prior work on remote fingerprinting virtualized operating systems to consider 

fingerprinting real-time systems. The broad goal of this thesis is to express the 

relationship between virtualization and real-time systems, using space as a motivating 

context.  

A. MOTIVATION 

The use of space systems has grown dramatically since their inception. This 

motivates the development of new space system architectures able to support this 

demand. General William Shelton of Air Force Space Command claims that space was 

once a domain in which a single satellite orbited earth and is now one that supports nearly 

every United States military operation across the world (Garamone, 2014). The 

Department of Defense (DOD) relies on space systems for a broad spectrum of services, 

including communications, mission specific intelligence, operational awareness and 

weather analysis. The 2000 National Reconnaissance Office (NRO) Commission Report 

describes how the demand for data from NRO satellites has increased disproportionally to 

the resources provisioned, which is putting pressure on the office to meet all the 

 1 



 

requirements from its customers (“Report of the National Commission for the Review of 

the National Reconnaissance Office,” 2000). The DOD recognizes this strain on space 

system resources and is developing strategies to overcome such issues. One such strategy 

is the development of alternative architectures to make space systems more flexible, more 

secure and less costly. The 2011 National Security Space Strategy emphasizes the need to 

develop a “resilient, flexible, and healthy space industrial base” and states that it will 

“continue to explore a mix of capabilities with shorter development cycles to minimize 

delays, cut cost growth, and enable more rapid technology maturation, innovation, and 

exploitation” (Department of Defense [DOD], 2011).  

At the same time, the functional requirements of embedded systems in the space 

domain and the hardware that supports them have become more complex over the past 

two decades (Andrews, Bate, Nolte, Otero-Perez, & Petters, 2005; Windsor, Deredempt, 

& De-Ferluc, 2011). Many systems are now moving to multicore processors instead of 

single core processors, which complicate the systems’ ability to safely and securely 

support isolated real-time processes (Santangelo, 2013). As a result, efforts are being 

made to consolidate the code base of these complex systems and to design a robust 

management infrastructure to maintain temporal and spatial isolation between real-time 

applications and to limit security vulnerabilities (Joe et al., 2012; DaSilva, 2012; Windsor 

et al., 2011). 

The DOD faces a number of challenges in the space domain given the numerous 

requirements for space systems vital to national security today. The DOD needs to 

incorporate the growing complexities of embedded systems in space while 

simultaneously cutting the costs of space missions and increasing the flexibility and 

adaptability of these systems. The U.S. space industry is exploring different ways to 

effectively address these needs (Cudmore, 2013). One solution that has gained 

considerable traction is to move away from federated system architectures, integrating 

software components into a tightly-coupled, modular architecture. The avionics industry 

paved the way to such an integrated architecture with its development of the integrated 

modular avionics (IMA) architecture. The space industry is now in the process of 
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developing an architecture similar to IMA that addresses the unique requirements of 

space systems (Windsor et al., 2011). 

B. IMA AND IMA-SP 

The IMA conceptual architecture centralizes the various functions and services 

involved in a complex avionics system onto a single set of physical resources (Rushby, 

2000; DaSilva, 2012). IMA was introduced by the commercial avionics industry in the 

1990s (Ramsey, 2007). The motivation for IMA was to reduce costs associated with 

distributed hardware systems while maintaining the ability to manage the software in 

avionics systems efficiently, safely and securely. IMA was also meant to make system 

development easier by enabling incremental validation and parallel development of 

components (Windsor & Hjortnaes, 2009). The two key principles of security in the IMA 

construct are spatial and temporal isolation (Parkinson, 2011). Spatial isolation is 

achieved through software partitions, which are implemented in order to handle fault 

containment. If a fault event occurs in one partition, it is isolated to that partition and 

does not affect the other partitions in the system (Rushby, 2000). Temporal isolation is 

achieved through a statically defined scheduling algorithm for each partition, which 

regulates the amount of processing power each partition receives (DaSilva, 2012). An 

attractive method for implementing the IMA concept is through virtualization. Instead of 

having a distributed network of hardware devices that are each dedicated to specific 

functions, virtualization allows applications running in different software partitions to 

share the same hardware resources. IMA’s use is widespread throughout the commercial 

avionics industry (FAA, 2007) and its successful implementation has motivated the space 

industry to consider a similar conceptual framework (Diniz & Rufino, 2005).  

To the best of our knowledge, the majority of work in developing an IMA 

construct for space has been done by the European Space Agency. Claudio DaSilva 

discusses the European Space Agency’s work in developing the Integrated Modular 

Avionics for Space (IMA-SP) platform. He argues that the space industry lacks 

standardization and is in need of a partitioned software architecture like IMA. He notes, 

however, that there are several unique characteristics of the space domain that need to be 
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considered in the development of an IMA framework for space, including the limited 

power, mass and volume resources of space systems, which the ESA is currently studying 

(DaSilva, 2012). Windsor et al. (2011) also discuss the ESA’s work in evaluating 

Integrated Modular Avionics for Space (IMA-SP) and the current work in defining and 

demonstrating the IMA-SP construct with other members of the space community. 

NASA is cognizant of the need for more modular software architectures in space and is 

currently researching the benefits of virtualization and partitioning architectures in space, 

with the same goals as IMA-SP (Cudmore, 2013; Rushby, 2011). Many U.S. companies 

developing software products for the aerospace industry are also aware of the movement 

towards integrated architectures in space and are developing products that adhere to the 

IMA architecture.  

C. THESIS ORGANIZATION 

This thesis is organized as follows. In Chapter II, we review requirements of real-

time operating systems for space systems, software compliance standards for space 

systems and an overview of virtualization architectures. In Chapter III and IV, we survey 

several real-time operating systems and virtualization architectures designed for space 

systems. In Chapter V, we present our work in network-based fingerprinting of 

virtualized operating systems, and in Chapter VI, we conclude and discuss future work.  
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II. BACKGROUND 

In this chapter, we review a number of topics that provide context for the real-

time operating systems and virtualization architectures we survey later. First, we discuss 

real-time operating systems and the requirements for real-time operating systems in 

space. We review security criteria for space systems and software standards for space 

applications. Finally, we review common virtualization architectures and prior work 

relating to virtualization with real-time operating systems.  

A. REAL-TIME OPERATING SYSTEMS 

NASA defines a real-time operating system (RTOS) as a “preemptive 

multitasking operating system intended for real-time applications” and lists several 

features that an RTOS should have, which are summarized in Table 1.  

Table 1.   Characteristic Features of an RTOS (from “RTOS 101,” n.d.) 

Characteristics of an RTOS 

Scheduling mechanism that guarantees response 
time 

Task prioritization 

Support for task synchronization 

Priority inheritance 

Hardware and software resource management 

Guarantees tasks get completed by a deadline 

Deterministic 

Minimal latency 

Minimal context switching 
 

There are three primary categories for deadlines of real-time tasks: soft, firm and 

hard. Soft deadlines are those that are desirable but, if not met, will not cause serious 

damage to the system. If a firm deadline is missed, the system will not encounter total 
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failure but consecutive firm deadline misses could lead to system failure. Hard deadlines 

are ones that, if missed, result in catastrophic consequences to the system (“RTOS 101,” 

n.d.).  

What distinguishes an RTOS from a general-purpose operating system (GPOS) is 

the way it handles task scheduling and preemption in the kernel (Leroux, 2005). An 

RTOS schedules tasks based on their priority or deadline whereas a GPOS generally 

schedules tasks in a manner that maintains high throughput. An RTOS allows calls to the 

kernel to be preempted by user tasks that have higher priority whereas a GPOS requires 

that calls to the kernel be completed before another task can run, even if the task waiting 

is of higher priority than the task making the kernel call (“GPOS vs. RTOS,” 2012).  

B. REAL-TIME OPERATING SYSTEMS IN SPACE 

RTOSs are used extensively in space operations due to the time-sensitive and 

safety-critical operations handled, such as attitude and orbit control, navigation, 

communications, critical payload management and power management (Keesee, 2003). 

Unlike those for terrestrial systems, RTOSs for space systems must perform their 

functions under harsh environments over the lifetime of the space mission, which can be 

over a decade in some cases (Air Force Space Command, 2013). Additionally, RTOSs 

must be compatible with space-qualified hardware. For example, a relatively small 

number of processors are designed to withstand the radiation present in space 

environments by being radiation-hardened (RAD-HARD) (Beus-Dukic, 2001; Ginosar, 

2012). Further, efforts need to be taken to manage the size, weight and power (SWaP) of 

all space system components, including the operating system. Thus, RTOSs used for 

space systems often have a smaller memory footprint to accommodate SWaP constraints 

(Jones & Gross, 2014; Cudmore, 2013). 

Beus-Dukic conducted a survey at the 1999 Eurospace conference among 

conference participants on the criteria they felt was most important when choosing a 

commercial RTOS for space system development. The survey found that most 

participants considered RTOS configurability, scalability and hardware compatibility to 

be essential features of an RTOS. Also of high importance were support for specific 
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programming languages and the availability of development tools. Unfortunately, there 

has not been a comparable survey since this, but their data gives us some insight into 

what criteria might be used by developers when choosing a commercial RTOS.  

C. SOFTWARE COMPLIANCE IN SPACE SYSTEMS 

The use of commercial off-the-shelf (COTS) products in space systems introduces 

some unique concerns in the space industry. NASA identifies some of these concerns, 

including the possible lack of documentation; the inability to examine the source code of 

proprietary software; the questionable development process of the code base; and the lack 

of required functionality or the addition of unnecessary functionality (NASA, 2004a). 

Since much of the software used in space systems is commercially developed, a series of 

standards and guidelines exist to help ensure software meets basic safety and security 

requirements for space systems. It should be noted that—while the U.S. space industry 

has a number of software standards and guidelines (“NASA Reference Documents,” 

2013)—much of the research in virtualization for space systems draws from avionics 

software guidelines (Windsor et al., 2011). The commercial avionics industry pioneered 

the idea of integrated modular avionics because of its potential to reduce costs and 

increase revenue and it has been successfully tested and deployed in a number of 

commercial aircraft (Prisaznuk, 2008). The space industry is drawing from the success of 

IMA and hardware consolidation using guidelines developed by the avionics industry to 

develop its own IMA architectures. In this section, we discuss existing standards and 

guidelines for the space industry, as well as relevant guidelines from the avionics 

industry.  

1. DOD Standards  

MIL-STD-498 is a U.S. military standard pertaining to software development 

released in 1994 (DOD, 1994). In 2008, it was largely superseded by IEEE 12207 

(Moore, 1998), an international standard pertaining to the software life cycle process. It 

includes guidance involving the processes, activities and tasks included during the 

acquisition, service, supply, development, operation and maintenance of software 

products. It is intended for software acquisitions personnel, suppliers, developers, 
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operators, maintainers, managers and users of the software. IEEE 12207 is listed as a 

required standard for NASA mission-critical software (“NASA Software Guidelines,” 

n.d). 

DOD Instruction 8581.01 (DOD, 2010) is the DOD’s information assurance 

policy for space systems. The instruction applies to all DOD space systems and space 

system components used to receive, store, process, display or transmit classified and 

unclassified data. The instruction lists information assurance directives with which DOD 

systems must comply and also mandates that information assurance requirements for 

software used in DOD systems be validated through the applicable military department.  

a. IEEE 1228 and NASA-STD-8719.13B  

IEEE 1228 is an international standard published in 1994 pertaining to software 

safety plans. IEEE 1228 is cited in NASA’s own standard for software safety, NASA-

STD-8719.13B, as an optional standard that can be used as an additional template when 

developing a software safety plan. NASA-STD-8719.13B is a NASA-specific technical 

standard, published in 2004. NASA-STD-8719.13B outlines software safety requirements 

for all NASA projects and details how to guarantee safety is built into software developed 

or acquired by NASA (NASA, 2004b). This standard applies to all COTS software, 

stating that all COTS software used in safety-critical systems needs to be thoroughly 

analyzed and evaluated. Interfaces to developed code, extra functionality, the ability to 

meet safety functions and the interaction of the software with other parts of the system 

need to be tested (NASA, 2004b, p. 28). 

b. DO-178B 

DO-178B, titled “Software Considerations in Airborne Systems and Equipment 

Certification,” is primarily used by the Federal Aviation Administration but is sited 

extensively by NASA and others proposing virtualization architectures and real-time 

operating environments for space (Beus-Dukic, 2001; Vanderleest, 2013). DO-178B is 

not a mandatory standard but, rather, a set of guidelines to ensure the software used in 

airborne systems complies with airworthiness certification requirements. It is used in the 

international Avionics industry as the basis for software certification for commercial 
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aircraft (Nelson, 2003). DO-178B identifies five different design assurance levels 

(DALs), A through E, each representing the severity level of a software function. For 

example, the highest severity is level A and represents software that, if it fails, could 

cause the entire system to go into a failure state. The standard also identifies a total of 65 

objectives for the software being tested. The set of objectives relevant to the software 

under test depends on its DAL rating (Rushby, 2011). 

c. ARINC-653 

ARINC-653 is a specification developed by the private entity Aeronautical Radio, 

Incorporated. This standard is used throughout the avionics industry and is gaining 

recognition in the space industry (ARINC Standards Store, n.d.; Rufino & Craveiro, 

2008). ARINC-653 specifies a standardized interface between an RTOS and its 

applications (Diniz & Rufino, 2005) and defines a set of functional and certification 

requirements meant to ensure safety (Rufino & Craveiro, 2008). ARINC-653 is tightly 

connected to the concept of IMA since it is based on strict spatial and temporal 

partitioning rules. Spatial partitioning means that partitions have separate address spaces, 

which cannot be accessed directly by other partitions. Temporal partitioning means that 

only one application has access to system resources at any given time (Schoofs, Santos, 

Tatibana, & Anjos, 2009). Figure 1 illustrates the design of a system based on the 

ARINC-653 specification.  
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Figure 1.  Example Application of the ARINC-653 Specification (from “ARINC 

653,” 2008) 

At the heart of the ARINC-653 specification are two main concepts: the partition 

and the applications/executive (APEX) layer. The partition is intended to be a container 

for applications running on the operating system, ensuring applications are separated 

spatially and temporally from one another to avoid fault propagation (Gomes, 2012). 

Partitions can also be used for system services not available through the APEX interface, 

like fault management or device drivers (Samolej, 2011).  

The APEX interface is a standardized application program interface (API) for 

services available to partitions. This enables hardware to be designed independently of 

software and allows software to be developed for ARINC-653 partitions, agnostic to the 

hardware providing this environment (Gomes, 2012). This increases the portability, 

reusability and modularity of systems, which are all goals of the IMA construct (“ARINC 

653,” 2008). The APEX has 51 routines that handle the following key functionalities: 

process management, time management, partition management, inter-partition and intra-

partition communication management, and health monitoring (“ARINC 653,” 2008). 

These functionalities enable each partition to manage its own tasks and processes. 

Communication across partitions is provided through requests to the operating system via 

the APEX API (Gomes, 2012). The APEX does not provide memory management 
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services; instead, it assumes memory is statically allocated to partitions at configuration 

time (Samolej, 2011). 

Partitions consist of one or more processes, scheduled according to their priority. 

Process scheduling is based on the scheduling algorithm determined at configuration time 

(Han & Jin, 2011). Inter-partition communication is handled through the use of queuing 

and sampling port communication units, which are objects defined at system integration. 

Sampling ports allow a partition to access a sampling communication channel, in which 

messages are not stored but, rather, the most recent message overwrites any previous one. 

In contrast, queuing ports allow messages to be queued rather than over-written. Ports are 

connected via channels when the partitions are integrated, as defined in a configuration 

file. Intra-partition communication is handled using semaphores, blackboards and 

buffers; blackboards are similar to sampling ports, and buffers are similar to queues 

(Diniz & Rufino, 2005). The health monitor is a facility that monitors the hardware, OS 

and applications. The monitor can isolate faults by taking an action (such as restarting a 

partition) and prevent failures from propagating through the system (Samolej, 2011). The 

health monitor is meant to identify and manage errors within the system at the process 

level, the partition level or the module level. Errors are managed through the use of 

procedures defined by the system developer (Samolej, 2011). 

D. VIRTUALIZATION BACKGROUND 

In this section, we review definitions associated with virtualization and describe 

common architectures used to implement virtualization. The DOD’s Enterprise Software 

Initiative defines virtualization as “the separation of a computer operating system’s 

service request from the underlying physical delivery of that service by the hardware” 

(DOD ESI, n.d.). Tavernes et al. claim that virtualization can be implemented through 

three primary methods: hypervisor-based, microkernel-based and microvisor-based 

(Tavares et al., 2012). In this section, we first review the hypervisor approach, with 

examples of its implementation. We then briefly describe the microkernel and microvisor 

concepts. 
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1. Hypervisor Terminology 

The term virtualization refers to the idea of creating a software environment on 

which multiple programs or operating systems can run, as if they were running on native 

hardware (Iqbal, Sadeque, & Mutia, 2009). This software environment is an abstraction 

layer that maps a hosted (guest) system’s interface and resources onto an underlying 

interface and resources, belonging to a different “real” (host) system (Smith & Nair, 

2005). The term commonly used to refer to this software abstraction layer is the virtual 

machine monitor (VMM) or hypervisor. The hypervisor acts as mediator between a host 

system’s hardware and the various guest environments running on the hypervisor, called 

virtual machines (VMs). VMs are isolated from one another, coordinated in their 

resource use by the underlying hypervisor (Chiueh & Brook, 2005). 

Popek and Goldberg (1974) define two primary types of hypervisors: type-1 (or 

native) and type-2 (or hosted). Type-1 hypervisors run directly above the host system’s 

hardware and provide all VM resources. Type-2 hypervisors operate on top of a host 

environment and are dependent on this underlying OS for maintenance and distribution of 

resources. For example, type-2 hypervisors cannot boot until the host operating system 

has booted and, in the event the host operating system crashes, so too does the type-2 

hypervisor (Jones, 2010). Figure 2 illustrates type-1 and type-2 hypervisors.  

 
Figure 2.  Example Type-1 and Type-2 Hypervisors (from Baliyase, 2014) 
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2. Full Virtualization Architectures  

Full virtualization, illustrated in Figure 3, allows different operating systems to 

run unmodified on either type-1 (e.g., VMware ESXi) or type-2 (e.g., VMware 

Workstation) hypervisors. The hypervisor emulates the host platform, such that the VM 

and its applications run without any modification and without knowing that they are 

running on a virtualized platform (Jones, 2010). The hypervisor is responsible for 

emulating devices with which the VMs interact, providing VMs access to virtual 

hardware devices. When a VM wants to interact with a virtual device, requests from the 

VM are handled by the hypervisor (Kirch, 2007). The hypervisor, in turn, interacts with 

the hardware via a host operating system driver (for type-2 hypervisors) or a hypervisor 

driver (for type-1 hypervisors) (Sahoo, Mohapatra, & Lath, 2010). 

In full virtualization binary translation converts privileged machine code from the 

VM to the hardware. Binary translation is a process whereby the hypervisor scans a 

VM’s memory for privileged instructions before they are executed, and dynamically 

modifies these into code that the hypervisor can emulate for the hardware (Binu & 

Kumar, 2011). Full virtualization tends to have high overhead due to the need to translate 

machine code, and the frequency of traps between the VM and the hypervisor (Jeong, 

2013). 

 
Figure 3.  Example of Full Virtualization (from Jeong, 2013) 

3. Paravirtualization Architectures 

Paravirtualization differs from full virtualization in the way communication 

between the VMs and devices is handled. In full virtualization, the hypervisor fully 
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emulates devices and translates privileged instructions without the guest OS being 

modified; in paravirtualization, the guest OS has been modified to run virtualized. This 

modification allows the VM to relay instructions through the hypervisor without 

requiring that the hypervisor first translate them. For example, paravirtualization, 

illustrated in Figure 4, can be implemented using a privileged VM to handle input/output 

(I/O) requests from other guest VMs. The privileged VM is equipped with a “back-end” 

driver that can access the hardware, while the other VMs are equipped with “front-end” 

drivers (Binu & Kumar, 2011). When a VM wants to execute an I/O instruction, it uses 

its front-end driver proxies to relay the instruction to the back-end driver. The hypervisor 

does not need to scan for privileged instructions during operation; instead, the 

paravirtualized guest has been modified to send requests to the back-end driver.  

 
Figure 4.  Implementation of Paravirtualization (from Binu & Kumar, 2011) 

The modified instructions used by paravirtualized guest OSs are called hypercalls. 

Hypercalls are software traps from the VM’s virtual driver to the hypervisor (LeVasseur 

et al., 2005; “Xen Hypercall,” n.d.). Paravirtualization tends to be simpler and faster than 

full virtualization but has considerable engineering cost, since each guest OS is modified 

to be aware that it does not run on native hardware (Barham et al., 2003). 
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4. Software Emulation Architectures 

Emulation is a process whereby the physical hardware platform, such as ARM or 

PowerPC, is emulated by the hypervisor (Murphy, n.d.) as illustrated in Figure 5. Here, 

the hypervisor emulates different instances of hardware, such as the processor and I/O 

devices, used by separate VMs. The hypervisor translates the instruction set architectures 

(ISA) of an emulated processor into the ISA of the underlying platform. In software 

emulation, every instruction issued by the VM is interpreted by the emulator layer 

(Chiueh & Brook, 2005; Jones, 2010). 

 
Figure 5.  An Illustration of the Emulation Concept (from Jones, 2011). 

5. Hardware-Assisted Virtualization Architectures 

Hardware-assisted virtualization refers to changes that have been made directly 

in hardware to better accommodate virtualization. With hardware-assisted virtualization, 

extensions have been added to CPUs and their ISAs so that certain virtualization 

procedures, such as binary translation or paravirtualization via hypercalls, are 

unnecessary. Instead, privileged instructions can be trapped and emulated by the 

hardware directly, instead of by the hypervisor (Jones, 2010; “Understanding Full 

Virtualization,” 2007).  
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6. Example Architectures 

In this section, we review the landscape of virtualization technologies. We discuss 

five well-known virtualization products—VMWare Workstation, Xen, Qemu, KVM and 

VMWare ESXi—employing these as points-of-comparison in our survey, later. 

a. VMWare Workstation 

VMWare Workstation is VMWare’s full virtualization architecture, designed to 

run on individual PCs. VMWare Workstation runs as a type-2 hypervisor and is designed 

to work with x86 host systems. When VMWare Workstation is installed, three 

components are created: the VM Driver, the VMM and the VMWare Application or 

VMApp (see Figure 6). Both the VMM and the VM Driver operate at the same privilege 

level as the host OS, while the VMApp runs at the level of the guest VM (above the 

VMM). The VMM is an application running on the host OS. When a user executes the 

VMApp, it works with the VMDriver to load the VMM into the host’s kernel memory. 

Once loaded, the host operating system is only cognizant of the application and the driver 

and not the VMM. The VMM communicates directly with the hardware, and the host 

operating system via the VMDriver (Munro, 2001). 

 
Figure 6.  VMWare Workstation Architecture (from Munro, 2001). 

Non-privileged instructions executed on the guest OS are sent through the VMM 

directly to the host system to be processed. Privileged instructions, however, are trapped 

by the VMM and translated via binary translation. The VMDriver then facilitates a 

transfer so that the VMM can communicate with the host OS. Once in the “host world,” 
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the VMApp-translated instructions are communicated via the VMApp to the host OS, 

which executes the instruction (Rosenblum & Garfinkel, 2005; Chiueh & Brook, 2005; 

USENIX, 2001). 

b. XEN 

Xen, illustrated in Figure 7, is an open-source, type-1 hypervisor for x86 

platforms that utilizes paravirtualization but also supports full virtualization and 

hardware-assisted virtualization. Xen operates directly on top of the host hardware, in a 

higher privilege level than all but one of its VMs. The Xen hypervisor creates a 

distinguished VM at boot time, the Domain 0 or Dom0 VM, which is privileged and 

responsible for various management tasks (see Figure 7). The Dom0 VM, through its 

ability to interact directly with host hardware and provide interfaces for other VMs, is 

able: to create and kill other VMs, to control their physical memory allocations, to control 

a VM’s access to various underlying physical resources, such as the hard disk and shared 

network devices, and to manage the I/O of each VM. The Dom0 VM is the only domain 

that is able to access the hardware directly (“DomU,” n.d.). 

 
Figure 7.  Xen Architecture (from “Virtualization,” 2013) 

To more efficiently handle privileged instructions from a guest OS instance to the 

VMM, Xen requires that each paravirtualized guest OS is modified so that privileged 

instructions are replaced with calls to the Xen hypervisor. VMs communicate directly 

with the Xen hypervisor through hypercalls to perform privileged operations (Barham et 

al., 2003; Binu & Kumar, 2011). 
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c. QEMU 

Qemu is a software-based hardware emulator that can run multiple instances of 

itself on top of a host operating system. Each instance of Qemu can be viewed as a 

hypervisor, emulating a system (see Figure 8). Qemu is capable of emulating several 

different CPUs, including x86, PowerPC, ARM and SPARC. Qemu consists of several 

subsystems, including a CPU emulator, emulated devices (VGA display, the mouse, 

keyboard, network card), a user interface and a debugger. These subsystems allow for the 

complete simulation of an unmodified guest running on top of emulated hardware.  

 
Figure 8.  Qemu Architecture (from Hussein, 2009) 

Emulation in Qemu is carried out using a process called dynamic binary 

translation, to translate guest CPU instructions into host instructions. Translation occurs 

at runtime and the result is stored in a fixed-size cache for reuse later. By using a cache, 

frequent instructions do not need to be translated multiple times. The process by which 

frequently used instructions are saved for reuse, to avoid translation overhead, is called 

dynamic recompilation (Landley, 2009). There are several steps in Qemu’s dynamic 

translation process. First, guest instructions are broken into “micro operations.” The 

purpose of this is to simplify the translation logic, allowing for repeated use of translated 

micro-operations. Each micro operation is implemented individually, written in C and 

compiled by GCC to create native, object files. The object files are used by Qemu’s 

dyngen utility, a compile time tool that uses the object file as input to a dynamic code 

generator. The code generator is invoked at runtime to create the machine code used by 

the host (Bellard, 2005; Chiueh & Brooks, 2005). 
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d. KVM 

Kernel virtual machine (KVM) is an open-source, hardware-assisted virtualization 

architecture that supports paravirtualization (see Figure 9). KVM requires Intel VT-X or 

AMD-V enabled CPUs and makes use of their CPU extensions (Habib, 2008). The KVM 

VMM is essentially a modified Linux kernel module designed to operate as a hypervisor. 

Each VM running on KVM is a Linux process, which can be managed like any normal 

Linux process. Whereas normal Linux processes operate in either user mode or kernel 

mode, KVM enables a third “guest mode.” Processes in guest mode run from within the 

KVM VM (Habib, 2008). Since each VM is a Linux process, they can leverage all the 

features available within the Linux kernel. For example, SELinux and sVirt can be 

employed to implement security features to constrain KVM VMs (processes). KVM VMs 

use Qemu for I/O (Qemu, n.d.), which is employed as a user-space process inside the VM 

(Habib, 2008). Memory for each VM can be shared by using the Kernel same-page 

merging (KSM) feature, which scans each VM’s memory space and consolidates 

identical memory pages (Zhang et al., 2010). 

 
Figure 9.  KVM Architecture (from Virtualization Station, 2008) 

e. VMware ESXi 

VMware ESXi is a type-1 hypervisor (vSphere ESXi, n.d.). The primary 

component of VMware ESXi is the VMKernel (see Figure 10). This controls all 

interaction with the hardware, and is designed with the sole purpose of managing and 

controlling the VMs. In addition to the VMs that run above VMKernel, several processes 

also run on top of the VMKernel to help with VM management. One of these processes is 

a VMM process, which provides the execution environment for the guest operating 
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system running within each VM. There is one VMM instance per VM. The VMM 

process is an intermediary process allowing guests to interact with the resources 

controlled by the VMKernel (Mishchenko, 2010). Each instance of the VMM process 

utilizes a helper process, called the VMX, which handles I/O to non-critical devices and 

communicates with the user interfaces and remote consoles (“VMWare Knowledge 

Base,” n.d.). Additional processes that run above the VMKernel are the Direct Console 

User Interface (DCUI) and the Common Information Model (CIM) server. The DCUI is a 

low-level management interface used for initial configuration of the ESXi hypervisor. 

The CIM server enables remote monitoring of the ESXi server and the VMs it manages, 

implementing a standard CIM API for remote CIM clients (Fujitsu, 2010). 

 
Figure 10.  ESXi Architecture (from “The Architecture,” n.d.). 

7. Microkernel and Microvisor 

A microkernel is a small software layer over hardware, providing services to 

processes and operating systems in a less privileged domain (“Microkernel Architecture,” 

n.d.; Douglas, 2010). A hypervisor’s main responsibility is to implement virtual machines 

that run at a lower privilege level than the hypervisor; in contrast, a microkernel is a 

small base on which other systems can be built (General Dynamics, 2008). In particular, 

a hypervisor may be implemented on top of a microkernel.  

Armand and Gien suggest that the use of microkernels is motivated by the 

increasing complexity of operating systems (Armand, 2009). Microkernels are well suited 

for use in embedded systems, which are often not designed to support a full-featured, 
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monolithic kernel. Microkernels allow systems to be designed in less complex ways and 

in a more modular fashion since less functionality is included at the kernel level 

(Armand, 2009). Security is another motivation for the development of microkernels. 

Iqbal et al. observe that microkernels support the principle of least privilege: 

functionalities at higher privilege levels are as limited as possible (Iqbal et al., 2009). 

Only essential tasks, such as low-level address space management, thread management 

and inter-process communication are handled by the microkernel.  

The term “microvisor” is used to refer to a microkernel that supports 

virtualization (Iqbal et al., 2009; General Dynamics, n.d.). The term first appears in 

reference to the OKL4 microvisor in 2010. The OKL4 microvisor is designed to support 

both full operating systems, as well as applications, and can support real-time and non-

real-time software (Heiser &Leslie, 2010). Next, we discuss the real-time operating 

systems that can be used in space systems.  
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III. REAL-TIME OPERATING SYSTEMS FOR SPACE 

In this chapter, we survey real-time operating systems currently being used or 

proposed for use in the space domain. We discuss how each RTOS is used in space and 

review the high-level design of the operating system, task or process management, 

scheduling and memory management. We then discuss the compatibility of each RTOS 

with virtualization architectures, its compliance with space standards and offer an 

analysis of its use in space system development.  

A. SCOPE 

The purpose of our survey work is to review fundamental RTOS designs and 

identify different methods of implementing key functionalities (see Table 2). Some 

RTOSs have been excluded from this study, due to lack of industry adoption or lack of 

available system information. This includes eCos (“Home Page,” n.d.), ThreadX 

(“ThreadX,” n.d.), Wind River Linux (“Wind River Linux,” n.d.), QNX (QNX, n.d.), 

Deos, HeartDeos (“A Time,” n.d.), and Salvo (“Welcome,” n.d.). Table 2 summarizes the 

pertinent attributes of an RTOS. 
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Table 2.   RTOS Attributes Chart 

RTOS License Supported 
Languages 

Supported 
APIs 

Relevant 
Standards 

Hardware 
Support 

Security 
Modes 

Memory 
Footprint 
(kernel) 

Memory 
Protection Scheduling Performance 

Evaluation 
Task1 

Execution 
Mode 

RTEMS Open-source 
(GNU GPL) 

C, Ada, 
C++, Java, 
Go, Lua 

POSIX, 
BSD 
Sockets, 
SAPI, 
Classic 
RTEMS 
API 

None  
(Space 
Qualified 
version is 
GSWS 
qualified)  

ERC32, 
LEON, 
ARM, 
Pentium, x86, 
MIPS, 
PowerPC 

supervisor 
(On-Line 
Applications 
Research 
Corporation, 
2013) 

~1200MB 
(Evans, 
2007) 

None Round robin, 
fix priority, 
earlierst 
deadline first, 
constant 
bandwidth, 
simple SMP, 
partitioned/cl
uster 
scheduler 

Yes Privileged 

FreeRTOS Open-source 
(Modified 
GNU GPL) 

C FreeRTOS 
API 

None  
(SafeRTOS 
is DO178-B 
certified) 

x86, Xilinx, 
ARM, PIC, 
Freescale  

user, 
supervisor 
(PowerPC) 

~5-10KB Use of 
hardware 
MPU on 
Cortex-M3 
and ARM 
processors 

Priority 
based 
preemptive, 
cooperative, 
hybrid 

No Privileged 

PREEMPT_RT Open-source 
(GNU GPL) 

All Linux POSIX None all Linux user, kernel ~100MB None FIFO, Round 
Robin, Batch, 
Idle, Other 

Yes User 

RTLinux Open-source 
(GNU GPL) 
or 
Commercial  

All Linux POSIX None all Linux user, kernel ~9MB 
(Compute
r as a 
controller, 
n.d.). 

None 
(Pettersson 
& 
Svensson, 
2006) 

FIFO, Round 
Robin, Batch, 
Idle, Other 

Yes Kernel 

1 The term “task” refers to the basic unit of execution for an RTOS. 
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RTOS License Supported 
Languages 

Supported 
APIs 

Relevant 
Standards 

Hardware 
Support 

Security 
Modes 

Memory 
Footprint 
(kernel) 

Memory 
Protection Scheduling Performance 

Evaluation 
Task1 

Execution 
Mode 

RTAI Open-source 
(GNU GPL) 

All Linux RTAI 
Native API, 
POSIX 

None ARM, x86, 
PowerPC 

user, kernel ~4.5MB 
(size of 
latest tar 
file) 

None 
(though use 
of LXRT2 
module 
allows 
applications 
to be 
written in 
user space)  
(Contributi
ng Editor, 
2001) 

FIFO, round 
robin, dual 
scheduler 
(RT-
microkernel 
and userland 
non-RT 
kernel) 

Yes Kernel 

Xenomai Open-source 
(LGPL) 

All Linux Xenomai 
Native API, 
POSIX 
(skin) 

None ARM, 
BlackFin, 
x86, 
PowerPC, 
Nios 11 
(“Embedded 
Hardware, 
n.d.) 

user, kernel ~20MB 
(size of 
stable 
release tar 
file) 

Mmap 
POSIX 
facility 

FIFO, Round 
Robin, 
Sporadic, TP, 
other 

Yes Primary, 
secondary3 

VxWorks Commercial C, C++, 
Ada, Java 

VxWorks 
API, 
POSIX 

Customizabl
e to be DO-
178B 
certified 

ARM, 
FreeScale, 
MIPS, 
Pentium, x86, 
etc. 

user, kernel ~20KB Hardware 
MMU 
support 
configuratio
n options; 
stack 
protection; 
POSIX 

Round 
Robin, 
preemptive 
priority-
based 

Yes Privileged 
or user 
(RTP 
tasks4 run 
in user 
mode) 

VxWorks 653 Commercial C, C++, 
Ada, Java 

POSIX, 
VxWorks 
API, 
ARINC-653 

ARINC-653 FreeScale; 
PowerPC, 
Intel IA-32 

User, kernel Unknown POSIX 
memory 
lock facility 

ARINC 
time-
preemptive 
scheduling; 
priority-
preemptive 
scheduling 

No Supervisor,
user 
(partitions 
run in user 
mode) 

2 LXRT is an RTAI module that allows real-time tasks to be developed and run in user space. LXRT processes can be migrated to kernel space.  
3 Primary mode is equivalent to kernel mode and secondary mode is equivalent to user mode. 
4 See “VxWorks” section where RTPs are discussed. 
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RTOS License Supported 
Languages 

Supported 
APIs 

Relevant 
Standards 

Hardware 
Support 

Security 
Modes 

Memory 
Footprint 
(kernel) 

Memory 
Protection Scheduling Performance 

Evaluation 
Task1 

Execution 
Mode 

INTEGRITY-
178B 

Commercial C, C++, Ada ARINC-
653; 
Integrity 
Kernel API 

DO178-B; 
SKPP High 
Robustness 

x86, 
PowerPC, 
ARM, MIPS, 
FreeScale etc. 

supervisor, 
user 

Unknown Acccess 
verification; 
processor 
MMU 
support 

ARINC-
partition 
scheduler 
(preemptive 
scheduler) 

No Privileged 
or user 

LithOS Open-source 
(Unknown) 

Unknown ARINC-653 Unknown x86 Unknown Unknown unknown Whatever is 
defined at 
configuration 

No Unknown 

LynxOS-178 Commercial C, C++ ARINC-
653; POSIX 

DO-178B x86, 
PowerPC 

User, kernel Unknown POSIX 
memory 
lock facility 

FIFO, round 
robin, 
priority-
based 
quantum 
(proprietary) 

No User, 
kernel 
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B. VXWORKS  

VxWorks is a proprietary suite of software products designed for embedded 

systems with real-time requirements. VxWorks is developed and maintained by Wind 

River Systems. Wind River offers software “platforms” tailored in different ways for 

specific industries, such as aerospace (“6.9 Platform,” n.d.); for certain architectures, 

such as MILS and ARINC653 (“MILS Platform,” n.d.; Parkinson, n.d.); or for certain 

certifications, such as DO-178B (“Cert Platform,” n.d.). These platforms all include the 

VxWorks Operating System, a development environment called the VxWorks 

Workbench, and optional middleware based on the platform. Both the MILS platform and 

the ARINC653 platform include modified versions of the standard VxWorks Operating 

System. VxWorks is compatible with over 124 different processors (“Board Support 

Packages,” n.d.) including the MIPS and PowerPC processor families. VxWorks has its 

own API but is also fully POSIX compliant.5 VxWorks provides an IPv4/IPv6 network 

stack that has undergone third party testing and validation to ensure high performance 

(“6.9 Platform,” n.d.). This network stack was cited as being a key factor in the ESA’s 

use of VxWorks on the European Geostationary Navigational Overlay System, a 

navigational space satellite mission (Parkinson, n.d.).  

Over the past 20 years, NASA has used VxWorks in a number of its missions 

(“VxWorks Space,” n.d.). VxWorks 5.3.1 was used on a MIPS processor by the Mars 

Exploration Rover (“VxWorks,” n.d.). Other versions of the operating system are being 

used on other missions including the Cygnus Spacecraft, an unmanned cargo transport 

vessel where VxWorks is running on the main flight computer (“Genesis,” n.d.). 

VxWorks is also being used to control the flight computer of the MESSENGER probe, an 

unmanned spacecraft orbiting Mercury (“Messenger,” n.d.; “VxWorks Space,” n.d.). 

SpaceX, the private space travel company, uses an unspecified VxWorks platform on its 

Dragon reusable spacecraft (“SpaceX,” n.d.).  

5 Supports the 1003.1 standard but does not provide process creation capability with fork() or exec() or 
file ownership and file permissions. 
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The VxWorks operating system is tightly coupled with the additional software 

products designed for embedded systems that Wind River offers. As such, the operating 

system is compatible with the Wind River Hypervisor. VxWorks can also run as an 

unmodified guest operating system on the Green Hills Multivisor (“Integrity Multivisor,” 

n.d.). 

Wind River offers a suite of highly customizable and modular software products 

with different design features based on the certifications or architectures required. As 

such, there is no set of standards with which the core VxWorks operating system alone 

complies. Wind River offers separate products, such as VxWorks653 that complies with 

the ARINC-653 specification, and the VxWorks CERT platform that complies with the 

DO-178 standard (“Profiles,” n.d.). 

1. Design 

Conceptually, VxWorks reflects the “process model” similar to UNIX and Linux, 

whereby kernel space and user space are clearly delineated and the applications that run 

in these two spaces run at different privilege levels (“6.9 Guide,” n.d.). VxWorks can be 

configured as a micro-kernel, a basic kernel or as a full-featured operating system. It is 

unclear which versions of the operating system are commonly used in spacecraft but 

documentation does confirm that VxWorks has been used in space systems of different 

sizes, such as microsatellites (Teston, Vuilleumier, Hardy, & Bernaerts, 2004) and 

unmanned spacecraft (“CIRA,” n.d.), which might indicate the use of different VxWorks 

configurations in space systems. Figure 11 illustrates the various capabilities included in 

each configuration.  
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Figure 11.  VxWorks Kernel Scale Options (from “6.9 Guide,” n.d.) 

a. Task Management 

The basic unit of execution in VxWorks is a thread, which VxWorks refers to as a 

task. VxWorks refers to processes as Real-Time Processes or RTPs, which are a 

collection of tasks grouped by function. Support for RTPs is an optional configuration in 
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VxWorks. If RTPs are supported then tasks within RTPs run in user mode. If RTPs are 

not supported then VxWorks tasks run at the highest privilege on the processor6 

(“VxWorks Architecture,” 2005).  

b. Scheduling Management 

VxWorks supports three types of task schedulers, listed in Table 3. For all 

schedulers, the default scheduling option is priority-based preemptive scheduling in 

which a higher priority task can preempt a lower priority task to run. 

Table 3.   VxWorks Supported Schedulers (from “6.9 Guide,” n.d., p. 138) 

Task Scheduler Use 
Traditional VxWorks Scheduler Scheduling policy enforced across the 

system (kernel and user mode) with either a 
priority-based, preemptive policy or a 
round-robin policy 

POSIX Thread Scheduler Schedules POSIX threads (pthreads) within 
real-time processes and applies scheduling 
policies on a thread-by-thread basis 

Custom Scheduler Developer can define own scheduler 
 

c. Memory Management 

VxWorks supports memory protection on processors with or without MMUs. 

RTPs have their own region of virtual address space that is not shared with any other 

process; this allows memory to remain isolated if VxWorks is running on a processor that 

does not have an MMU (“6.9 Guide,” n.d.).  

VxWorks also offers a proprietary mapping facility called sdLib, which enables 

RTP applications to share memory through a shared data region. Once established, user-

mode applications and kernel tasks have access to these shared data regions (“6.9 Guide,” 

n.d., p. 66).  

6 This applies to ARM, Intel and SuperH processors. On MIPS processors, if RTPs are not supported, 
tasks run in kernel mode. 
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2. Analysis 

VxWorks is a legacy RTOS that has proven its ability to perform on space 

missions for a number of years. Reliability is a major decision factor for use in space 

systems given the time and money involved in validating a new system. Space system 

developers tend to choose VxWorks due to its proven reputation on high profile space 

missions (“CIRA, n.d.; Volpe et al., 2000, p. 30).  

VxWorks is a modular RTOS that can be configured in various ways depending 

on the processor on which it runs and the applications it hosts. This is evident in the 

different options available for task management, scheduling and memory management. 

Flexible configuration options are another factor that space system developers cite as 

being essential when choosing an RTOS to use for space system development (Beus-

Deukic, 2001). 

VxWorks also offers a familiar development environment, which NASA’s Joint 

Propulsion Laboratory cited as being a factor in the Mars Curiosity Rover mission 

success. The VxWorks programming interface that is similar to UNIX, and its POSIX 

compatibility helped NASA developers develop and debug during development since 

their work took less time and existing code could be reused (“NASA’s Mars,” n.d.). 

C. REAL-TIME LINUX 

There are several projects dedicated to making Linux capable of handling real-

time requirements (“Introduction to Linux,” 2002). These projects offer different 

solutions to making Linux an RTOS. One approach taken by the RTLinux, Xenomai and 

RTAI projects is to develop a software layer below the Linux kernel that handles real-

time requirements. A second approach, taken by the CONFIG_PREEMPT_RT 

community (“Real-Time Linux Wiki,” n.d.), is to improve the existing Linux kernel to 

meet real-time requirements with the PREEMPT_RT patch (McKenney, 2005; 

Opdenacker, 2004; Clark, 2013). Each version of real-time Linux comes in the form of a 

patch to the standard Linux kernel. With this approach, the portability of these RTOSs to 

various hypervisors is comparable to main line Linux.  
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To the best of our knowledge, the different implementations of real-time Linux 

run on all of the virtualization architectures surveyed in this thesis. The implementations 

of real-time Linux do not comply with any space standards and the developers are open 

about the fact that there are no guarantees with the real-time Linux code.  

In 1999, NASA initiated a project called FlightLinux to assess Linux’s readiness 

for space systems. Though the program ended in 2002, many advantages to Linux’s use 

in space were identified, including the ease of developing applications required for 

missions and the relative ease of developing features, such as adding fault tolerance into 

the existing software (Katz & Some, 2003). Since the FlightLinux project, Linux has 

been used in a number of space missions (Edge, 2013; “Five Ways NASA,” n.d.). 

RTLinux was used in a hurricane data system for NASA’s Goddard Space Flight Center. 

In this project, RTLinux was responsible for aircraft attitude correction and a number of 

other tasks related to data collection (Wright & Walsh, 1999). RTAI is currently being 

used by NASA’s McDonald Laser Ranging Station for its range control activities, 

including locating satellites in orbit (Ricklefs, n.d.). Xenomai is used by NASA’s robotics 

developers to develop a robotic machine to perform tasks in space (Krüger, Schiele, & 

Hambuchen, 2013).  

In a 2013 presentation, Keven Scharpf of the PTR group cited the PREEMPT_RT 

patch as a viable solution to hard-real-time requirements for space systems. The PTR 

group has worked on a number of space missions, including the Tacsat-2 microsatellite 

mission, which was the first mission to use Linux in space (Scharpf, 2013). Wind River 

also makes use of the PREEMPT_RT patch in its WindRiver Linux 4 and 6 products 

(“Wind River Linux 4,” n.d.; “Wind River Linux 6,” n.d.). 

1. RTLinux, Xenomai, and RTAI 

RTLinux, Xenomai, and RTAI are all designed as “dual kernel” configurations. 

These operating systems have some minor differences, but their fundamental approach to 

making Linux real-time is the same. We will focus on the architecture of RTLinux for the 

remainder of this section.  
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In RTLinux (see Figure 12), a microkernel extension is added to the Linux kernel 

(Opdenacker, 2004). This extension is a set of Linux kernel modules that deal specifically 

with real-time tasks by providing a subset of the POSIX API (“RTLinux,” n.d.). With this 

alteration to the standard Linux kernel, a second real-time microkernel, i.e., RTLinux 

Kernel, is placed under the standard Linux kernel, which runs as an idle task on top of the 

RTLinux Kernel (Balasubramaniam, n.d.). Real-time applications are created as modules 

that run on the RTLinux Kernel and are written using a subset of the POSIX API, based 

on the POSIX Minimal Realtime System Profile, or PSE51 (Terrasa, Garcia-Fornes, & 

Espinosa, 2002).  

 
Figure 12.  Illustration of RTLinux Design (from Balasubramaniam, n.d.)  

a. Task Management 

All real-time tasks run at kernel privilege level and have direct access to the 

hardware. All interrupts are intercepted by the RT-microkernel, which decides what to 

do. If these interrupts have real-time handlers, then the RT-microkernel schedules them 

first (Yodaiken, 1999).  

b. Scheduling Management 

The RT-microkernel has its own scheduler that is responsible for scheduling both 

real-time and non-real-time tasks (Yodaiken, 2001). This scheduler is generally a 

preemptive priority based scheduler with tasks having their priority statically determined.  
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c. Memory Management 

In RTLinux and Xenomai, real-time tasks are allocated fixed amounts of memory 

for data and code (Balasubramaniam, n.d.) and do not use virtual memory (Yodaiken, 

2001). RTAI on the other hand, uses dynamic memory allocation (Balasubramaniam, 

n.d.). For all three dual-kernel configurations of Linux, the real-time applications running 

on top of the RT-microkernel share a common address space (Haas, n.d.). 

2. PREEMPT_RT  

The PREEMPT_RT patch (see Figure 13) makes the Linux kernel fully pre-

emptible through optimizations inside the kernel. The patch is sometimes referred to as 

RT-PREEMPT, PREEMPT-RT, CONFIG_PREEMPT_RT or CONFIG_PREEMPT 

(“Real-Time Linux Wiki,” n.d.). Unlike RTLinux, RTAI and Xenomai, PREEMPT_RT 

does not include a separate kernel to handle real-time tasks. The goal of the 

PREEMPT_RT project is to make the existing Linux kernel 100% pre-emptible (Rostedt 

& Hart, 2007, pp. 161–172).  

 
Figure 13.  Illustration of PREEMPT_RT Modification to Linux Kernel (from 

Jones, 2008) 

a. Design 

The PREEMPT_RT patch allows the Linux kernel to become a predictable and 

deterministic operating system (Rostedt & Hart, 2007). This is done by doing two things: 
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using threads to service selected device interrupts and replacing existing spin locks with 

mutexes that are preemptive and support priority inheritance (Fayyad-Kazan, 2014).  

b. Task Management 

Using separate threads to service device interrupts reduces interrupt latencies, 

allowing a higher priority task to not be significantly affected by a lower priority task, 

which causes heavy I/O interrupts (Rostedt & Hart, 2007). Mutexes in the 

PREEMPT_RT patch prioritize the tasks waiting for the resource (Moore, 2005).  

c. Scheduling Management 

The PREEMPT_RT patch does not include any modification to the schedulers 

already available in the standard Linux kernel.  

d. Memory Management 

The PREEMPT_RT patch does not include any additional memory management 

functionalities that are not already in use in the standard Linux kernel.  

3. Analysis 

There is a lot of discussion within the space community regarding Linux’s 

suitability for space systems. Prieto et al. (2004) cite a number of reasons why Linux is 

an attractive operating system for space. One factor is the time that can be saved in 

testing and debugging since developers are very familiar with the software environment. 

Another reason Linux is attractive is because the development platform for building 

applications can mirror the actual software environment in space. The open source 

community’s involvement in software debugging and problem solving is also a resource 

that Prieto claims can be incredibly helpful (Prieto et al., 2004).  

The Naval Research Laboratory cited that Linux was used on its TacSat-1 

spacecraft, primarily because accessibility to source code was vital for debugging 

purposes and because of the ease of migrating development software on x86 platforms to 

the actual PowerPC space processor. The TacSat-1, however, did not have any hard real-
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time requirements, which was a reason why NRL chose Linux as opposed to a 

proprietary RTOS like VxWorks (Huffine, 2005).  

Linux is an attractive operating system for space systems given its widespread use 

and legacy reliability in terrestrial systems. The real-time Linux projects surveyed offer 

features like task prioritization and bounded latencies that provide useful determinism for 

space systems. The projects however, have not been certified to any space standard and 

the developers make no guarantee that the real-time Linux projects are suitable for hard 

real-time systems. Key safety features like memory protection or static scheduling 

policies (in PREEMPT_RT) are only as good as the standard kernel.  

D. GREEN HILLS INTEGRITY-178B 

INTEGRITY-178B is a proprietary, ARINC-653 compliant, DO-178B Level A 

certified RTOS developed and maintained by Green Hills Software. The INTEGRITY 

178B separation kernel was certified to be compliant to the Separation Kernel Protection 

Profile under the U.S. Common Criteria evaluation scheme (Green Hills, 2008).  

It is unclear from published literature what hypervisors INTEGRITY-178B can 

run on as a guest. Green Hills Software has a virtualization platform called INTEGRITY-

Multivisor (see Chapter IV). In no descriptions of this platform is INTEGRITY-178B 

mentioned as a possible guest VM (“Integrity Multivisor,” n.d.).  

NASA selected INTEGRITY-178B to operate the flight control module and the 

backup emergency controller on the Orion Crew Exploration Vehicle, a space vessel 

designed to carry astronauts to the moon. NASA chose INTEGRITY-178B since it was 

considered the most mature RTOS and was the most cost-effective (“NASA’s Orion,” 

2008). INTEGRITY-178B is also used on NASA’s Pad Abort Demonstrator, a test bed 

platform meant to evaluate emergency abort scenarios for spacecraft crewmembers on the 

International Space Station (“Green Hills Software,” 2003; “Pad Abort,” 2003). 

1. Design  

Green Hills INTEGRITY-178B’s design is based on a secure separation 

architecture, which implements five different principles: minimal implementation, 
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componentization, least privilege, secure development process and independent expert 

validation (“Secure Separation,” n.d.). The INTEGRITY-178B separation kernel (see 

Figure 14) separates resources into partitions and isolates these partitions from one 

another. Applications of different criticality level can run within these partitions and the 

kernel ensures that a lower priority application cannot interfere with a higher priority 

application.  

 
Figure 14.  INTEGRITY-178B Design (from “Safety Critical Products,” n.d.) 

a. Task Management 

INTEGRITY-178B is an object-oriented OS, meaning that the various 

functionalities are treated as objects as opposed to actions. The core objects supported by 

INTEGRITY-178B and their purpose are listed in Table 4. Each task (subject) is 

associated with a single AddressSpace, which is a block of memory addresses.  

Table 4.   INTEGRITY-178B Objects 

OBJECT PURPOSE HOW DEFINED 
AddressSpace Defines a partition; supports 

task management 
Statically 

Task Task management Statically 
MemoryRegion Memory management Statically 
Link Access management Statically 
IODevice I/O management Statically 
Connection Synchronous and asynchronous 

communications 
Statically 

Activity Task management; 
asynchronous communications 

Statically or dynamically 

Semphore Task synchronization Statically or dynamically 
Clock Time Management Statically or dynamically 
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All tasks associated with a partition (i.e., an AddressSpace) have an identifier that 

links it to its AddressSpace. This task identifier is used for authentication purposes. The 

task identifier is used to enforce authorized information flow and resource sharing. Tasks 

within a partition can freely access resources allocated to the partition, but if a task tries 

to access resources from a different partition, the task will be terminated. Access policies 

for each AddressSpace are defined at configuration time.  

b. Scheduling Management 

The INTEGRITY-178B scheduler manages the execution of the tasks allocated to 

the configured partitions. Since INTEGRITY-178B is ARINC-653 compatible, it adheres 

to a partition schedule that is statically defined. Each partition is allocated a block of time 

in which its tasks can be executed. AddressSpaces can be allocated a specific block of 

processor time or can be combined with other partitions that then share processor time.  

c. Memory Management 

The INTEGRITY kernel runs in a physical address space and leverages the 

processor MMU to manage the virtual address spaces allocated to the partitions. Each 

partition has its memory and data statically assigned. INTEGRITY does not support 

dynamic memory allocation.  

2. Analysis 

INTEGRITY-178B is the only RTOS surveyed that has a separation kernel that 

has undergone formal verification and been proven to perform at “high robustness” levels 

by the National Information Assurance Partnership evaluation scheme. Security and 

safety design considerations, such as memory protection, ARINC-653 scheduling 

compliance and access policies for tasks are built into the RTOS, which make it suitable 

for safety-critical missions. The RTOS is also a proven RTOS for space systems, given 

its use in NASA missions.  

Arguably, INTEGRITY-178B offers less in the way of flexibility than VxWorks 

or Linux. The RTOS relies on the processor MMU for memory protection so is not 

suitable for processors without an MMU, such as the ERC32 and does not support 
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dynamic memory allocation. INTEGRITY-178B also does not have as extensive a track-

record within the space community compared to VxWorks (Cudmore, 2007).  

E. FREERTOS 

FreeRTOS is an open-source RTOS developed and maintained by the British 

company Real Time Engineers LTD. FreeRTOS is available under a modified GNU 

general public license, which allows applications developed with the FreeRTOS API to 

remain closed source (“FreeRTOS,” n.d.). SafeRTOS is another version of FreeRTOS 

developed by the company HighIntegritySystems, which is DO-178B certified (“Safety-

critical RTOS,” 2013). To our knowledge, SafeRTOS has not been deployed in any space 

systems so will only be discussed briefly. FreeRTOS is specifically tailored for 

microcontrollers and is portable to 35 different architectures, including FreeScale, x86 

and ARM. FreeRTOS uses its own API and does not support POSIX.  

FreeRTOS has been used primarily in small satellite deployments. It is an 

attractive choice because of the number of ports available for microcontrollers and 

because it is free (Holmstrøm, 2012). The private company GOMspace uses it on its 

Nanomind computer processor, which is designed to control small satellite missions 

(“NanoMind Computers,” n.d.). CubeSatShop.com advertises a flight-qualified processor 

called the ISIS on board computer that includes FreeRTOS (“The One-Stop-Shop,” n.d.). 

FreeRTOS has been used in a number of academic satellite projects including an Indian 

nanosatellite project called STUDSAT-2, which is India’s first nanosatellite project. 

FreeRTOS is used as the on board computer of STUDSAT-2 and controls the central 

workings of the satellite (Rajulu, Dasiga, & Iyer, 2014). The firm Surrey Satellite 

Technology Ltd. and the University of Surrey in England used FreeRTOS in their 

experimental nanosatellite, Strand-1, which was the first of a series of cooperative 

satellite missions aimed at technological innovation in the small satellite domain. Strand-

1 used a GomSpace on board computer, which ran FreeRTOS (Kenyon et al., 2011). 

FreeRTOS can run as a paravirtualized guest machine on the X-hyp embedded 

hypervisor (“Para Virtualized Quests for Xhyp,” n.d.). In 2014 a project to port 
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FreeRTOS to Xen on ARM was introduced by the Oregon based company Galois 

(Daugherty, 2014).  

1. Design 

The kernel itself is only composed of three C source files: queue.c, (queue 

structures), list.c, (linked list used in the queue structure) and tasks.c (task and scheduling 

logic) (Douglas, 2010).  

a. Task Management 

Tasks are defined as basic C functions and are the unit of execution. Applications 

that run on FreeRTOS are treated as a set of independent tasks (Real Time Engineers, 

Ltd., 2014). FreeRTOS supports one to one mapping of resources to tasks through the use 

of “gatekeeper tasks,” which are tasks that have sole ownership of a resource. Only this 

task can communicate with the resource directly; other tasks needing the resource need to 

communicate with the resource’s gatekeeper (via a queue) which will then make the 

resource available. 

b. Scheduling Management 

The FreeRTOS scheduler uses a fixed priority, pre-emptive scheduling algorithm, 

but also supports a cooperative scheduling model whereby tasks are never preempted and 

tasks with the same priority do not share processing time equally. The priority assigned to 

a task is not static and can be changed by the task itself.  

c. Memory Management  

FreeRTOS applications are able to allocate memory differently, depending on 

their requirements. If tasks or other facilities such as queues or semaphores are created 

before the scheduler starts running, then memory is dynamically allocated by the kernel 

and stays allocated for the duration of the application.  

FreeRTOS supports a macro that is used to allocate protected regions on the ARM 

memory protection unit (MPU) regions, but this requires the specific port of FreeRTOS 
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to run on processors that support an MPU such as the ARM Cortex-M3 (Real Time 

Engineers, Ltd., 2014).  

2. Analysis 

The fact that manufacturers of microprocessors for small satellites are including 

FreeRTOS on their chip sets indicates that FreeRTOS has a legacy in the small satellite 

domain (“NanoMind Computers,” n.d.). Being open-source also makes FreeRTOS an 

attractive option for missions with limited budgets. FreeRTOS is well documented and its 

core code development is maintained separately from community contributions, which 

makes revisions to the code consistent and traceable. The proprietary SafeRTOS version 

of FreeRTOS offers potential flexibility to developers who might be interested in a more 

secure version of the RTOS.  

FreeRTOS however, does not provide much in the way of security for its 

applications. The small code base of the kernel limits the potential vector for security 

breaches but protection mechanisms, such as memory protection are not consistently 

available for all versions of the RTOS. Furthermore, tasks can execute at the same 

privilege level as the kernel. 

F. LYNXOS-178  

LynxOS-178 is a DO-178B certified proprietary RTOS developed by Lynx 

Software Technologies. LynxOS-178 runs primarily on the x86 platform but also 

supports some PowerPC platforms (“Board Support,” n.d.). LynxOS-178 is not 

advertised as being completely ARINC-653 compliant since it does not support the 

ARINC-653 standard for inter-partition communications (Leiner, 2007) but it does 

incorporate some of the ARINC-653 functionalities.  

LynxOS-178 is currently being used to monitor signals and transmit navigation 

data in the ESA’s Galileo mission, a global navigation system that consists of thirty 

satellites (Howard, 2011). NASA has referenced LynxOS as a partitioning operating 

system worth studying for deployment in NASA space missions (Cudemore, 2013). 

LynxOS was used by NASA on the McDonald Laser Ranging Station to control tracking, 
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ranging and timing starting in the early 1990s but switched to RTAI in 2011 for cost 

reasons (Ricklefs, n.d.). To the best of our knowledge, LynxOS-178 can only run as a 

guest OS on the LynxSecure Microkernel hypervisor (“LynxOS-178,” n.d.).  

1. Design  

LynxOS-178 is fully POSIX compliant and uses POSIX as its native interface 

(see Figure 15). LynxOS-178 also includes some ARINC-653 functions, such as health 

monitoring, partition management, time and process management and the ARINC-653 

API. 

  
Figure 15.  Illustration of LynxOS-178 (from “LynxOS-178,” n.d., p. 2) 

a. Task Management 

POSIX threads are the basic scheduling entity. A task in LynxOS-178 is a group 

of threads Tasks run within partitions which are spatially isolated blocks of memory 

allocated by the processor’s MMU. LynxOS-178 uses a patented approach called 

“priority tracking” to prevent priority inversion. Each task has two priority values 

associated with it, one for kernel threads and one for user threads. Kernel threads that 

handle interrupts do so “in step” with the user thread that actually requires the interrupt 
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(“Linux Software,” n.d.). This allows kernel threads to have their priority dynamically 

changed so that they always have higher priority than user tasks (Carlgren & Ferej, n.d.).  

b. Scheduling Management 

The LynxOS scheduler is preemptive and supports FIFO, round-robin and 

priority-based quantum scheduling polices. The priority-based quantum policy is a 

proprietary scheduling policy, similar to round-robin but with dynamic time slices 

(Carlgren & Ferej, n.d.). Each partition running on LynxOS-178 is scheduled according 

to a fixed cyclic scheduling policy and is statically assigned processor time. Partitions are 

able to schedule their own tasks using priority-based preemptive scheduling. Priority 

inheritance and the priority ceiling protocol are supported to prevent priority inversion 

within a partition (Leiner, 2007).  

c. Memory Management 

LynxOS requires the processor’s MMU to do to memory protection. Neither 

memory nor resources are shared between partitions. Memory is statically allocated to 

partitions as defined in a configuration file called the virtual machine configuration table 

(VCT).  

2. Analysis 

LynxOS-178, like VxWorks and INTEGRITY-178B is safety certified and proven 

in the space domain. Unlike VxWorks and INTEGRITY-178B however, LynxOS-178 is 

limited in the number of processor families it supports, which currently consists of the 

x86, PowerPC and Pentium processors. LynxOS-178, like INTEGRITY-178B, also 

requires the use of a MMU for memory management and does not provide support for 

processors without an MMU. LynxOS-178’s POSIX compliance and support of multiple 

development languages, such as C++, were cited by the ESA as being some of the 

reasons LynxOS-178 was chosen to manage navigation functionality in the Galileo 

satellite mission (Howard, 2007).  
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G. RTEMS 

The Real-Time Executive for Multiprocessor Systems (RTEMS) is an open-

source hard real-time operating systems designed for embedded systems and available 

under the GNU General Public License (“RTEMS Community,” n.d.). RTEMS is 

compatible with a wide variety of processors including the ERC32, Leon, ARM, 

Pentium, various members of x86 architecture, MIPS and PowerPC (Silva, 2009), 

RTEMS supports a number of open standard APIs including POSIX and BSD sockets. 

Applications can be written in C/C++ using the POSIX API; additional languages 

supported are Ada, Java, Go and Lua (Bloom, 2013). 

RTEMS has been and continues to be used in many different space projects. 

RTEMS was used on the FedSat, a research microsatellite developed by an Australian 

cooperative research group composed of university, commercial and government 

organizations (“Operating Systems,” 2008; “Fed Sat 1,” n.d.) between 2003 and 2006. 

RTEMS was also used on the Galileo GIOVE-A, ESA’s first prototype for a navigation 

satellite (“Galileo Pathfinder,” 2010). RTEMS is a supported operating system on 

NASA’s SpaceCube satellites (Seagrave, 2008) and is being used on NASA’s Mars 

Reconnaissance Orbiter (Komolafe & Sventek, 2006/07; “Mars Reconnissance Orbiter,” 

n.d.). 

RTEMS version 4.8.1 has been ported to run on the XtratuM hypervisor as a para- 

virtualized guest OS. The ported code includes board support packages for the LEON2 

and LEON3 processors (“RTEMS,” n.d.). RTEMS can also run on the PikeOS 

microkernel developed by Sysco (“SYSGO’s Safe and Secure,” 2010) and on the AIR 

microkernel. RTEMS is the basis for the hardware abstraction layers of AIR but can also 

run as a client partition alongside the ARINC-653 API (Schoofs, 2011).  

1. Space Standards Compliance 

The European Space Agency used version 4.8.0 of RTEMS to develop a “space-

qualified” version of RTEMS that was qualified under the Galileo software standard 

(GSWS) to work on the ERC32, LEON2 and LEON3 processors. The GSWS is a space 

system software compliance policy that sets standards for the development, integration 
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and testing of software used specifically in NASA’ Galileo Spacecraft. GSWS requires 

independent module/unit testing to ensure software safety and assurance (Feldt, Torkar, 

Ahmad, & Raza, 2010). The ESA considered validating RTEMS with DO-178B but 

decided GSWS was a more complete standard at the time hence its use. The space-

qualified version of RTEMS is comprised of a series of scripts and patches that when 

applied to RTEMS code will delete some managers and will add others, making the 

system qualified up to a GSWS Development Assurance level B, which means that the 

OS does not contain any unused code (Silva, 2009).  

RTEMS has continued to evolve and as of version 4.10 ESA’s version is not 

maintained in the main RTEMS repository (Lee, 2012), which makes consistent 

development a challenge. ESA’s goal was to make RTEMS a building block in space 

missions but it first needed to get RTEMS TRL6 certified (“Definition of Technology,” 

n.d.). To achieve this goal, the ESA decided to focus on the components of RTEMS that 

were relevant to ESA space missions and enlisted the firm Edisoft to establish an RTEMS 

maintenance center that dealt only with the RTEMS developments being made by ESA 

instead of the general RTEMS community (“Operating Systems,” 2008). This diversion 

has led to some confusion and frustration amongst developers who are unclear on which 

version of RTEMS to work with for space projects (Lee, 2012).  

2. Design 

RTEMS (see Figure 16) supports dynamic memory allocation, inter-task 

communication and synchronization, various scheduling configurations, priority 

inheritance, responsive interrupt management and symmetric multi-processing across 

multiple cores. Such services are implemented by a set of “resource managers.” Core 

functions that are used by multiple managers, such as scheduling and object management 

are maintained as part of the “SuperCore” (Bloom, 2013).  
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Figure 16.  RTEMS Conceptual Architecture (from “RTEMS Architecture,” n.d.)  

a. Task Management 

Tasks are defined in RTEMS as the “smallest thread of execution that can 

compete on its own for resources” (On-Line Applications Research Corporation, 2013, p. 

64). When a task is created, it is allocated a task control block data structure. The TCB is 

the only RTEMS internal data structure that an application can access and modify. Tasks 

have a priority assigned to them when they are initially created (On-Line Applications 

Research Corporation, 2013).  

b. Scheduling Management  

The RTEMS scheduler is in charge of managing a given set of tasks in the ready 

state and determining when tasks get executed. The default scheduling algorithm is a 

priority-based scheduler, however, developers can also work with the following: a simple 

priority scheduler that maintains a single linear list--meant for small applications, earliest 

deadline first scheduler, constant bandwidth server scheduler (each task is given a CPU 

budget and if the budget is exceeded then a callback is invoked), simple SMP (symmetric 

multiprocessing) or a partitioned/clustered scheduler, which allows developers to choose 

different policies for different cores (On-Line Applications Research Corporation, 2013).  
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c. Memory Management 

RTEMS uses a flat memory model and does not support virtual memory 

allocation, segmentation or MMU hardware support. The partition manager creates and 

deletes partitions and dynamically allocates memory to them in fixed-sized units (On-

Line Applications Research Corporation, 2013). The POSIX mprotect() function can be 

used to protect regions of memory (“RTEMS 4.10.99.0 On-line Library,” 2014).  

3. Analysis 

RTEMS is proven in the space community given its use in many different space 

applications and its use by the ESA to develop a “space qualified” version of the RTOS. 

Its compatibility with many different processors, as well as its extensive documentation 

makes it an attractive RTOS for space system developers. 

As stated previously, there is some confusion within the space systems 

development community over which versions of RTEMS to work with since the space 

qualified version of RTEMS is based on an older version of the RTOS and is not part of 

the mainline RTEMS code development tree. RTEMS also does not support memory 

protection other than what POSIX offers and leaves it up to the developer to incorporate 

such features.  

H. ADDITIONAL REAL-TIME OPERATING SYSTEMS 

The following real-time operating systems are worth surveying due to their 

compatibility with key virtualization architectures despite the fact that there is limited 

documentation on how they function. We discuss the important attributes of each RTOS.  

1. LithOS 

LithOS is developed and maintained by the Spanish company Fentiss. LithOS is 

an ARINC-653 compliant para-virtualized RTOS designed to run as a partition on the 

XtratuM hypervisor (see Figure 17). Though there is no documentation of LithOS’s 

deployment in space, it was designed specifically to support systems requiring strict 
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spatial and temporal isolation that run on the XtratuM hypervisor, which the ESA is using 

to evaluate virtualization and IMA-SP.  

 
Figure 17.  LithOS Architecture, Running As an XtratuM Partition (from 

“LithOS,” n.d.) 

The XtratuM hypervisor (see Chapter IV) incorporates many of the ARINC-653 

spatial and temporal isolation mechanisms. LithOS leverages these when running as a 

virtual machine on the hypervisor. Additionally, LithOS provides support for multi-

processing, intra-process communication and process scheduling, which are services that 

XtratuM does not provide.  

LithOS follows the ARINC-653 standard and implements the ARINC-653 API, as 

well as its own native API. LithOS also includes a few non-portable services relating to 

time and partition management that the ARINC-653 API does not include, which are 

non-portable.  

2. VxWorks 653 

VxWorks 653 is a version of VxWorks that NASA has recognized as being a 

potential operating system for future projects (Raines, 2012; Barry, 2009; Jaekel, 2014). 
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VxWorks 653 is an ARINC-653 certified operating system that is comprised of the 

module OS and the partition OS. The module OS is the supervisor-mode OS that enforces 

time-space partitioning through memory management services and static schedules to 

ensures fault isolation. The partition OS is designed to run within a VxWorks 653 user-

mode partition, which is a virtualized run-time environment that supports applications. 

The partition OS is also known as “vThreads,” a multi-threading system based on 

VxWorks 5.5, which includes additional libraries that support the ARINC-653 APEX and 

POSIX APIs. Each instance of vThreads also contains its own scheduler. Figure 18 

illustrates the architecture of VxWorks 653.  

 
Figure 18.  VxWorks 653 Architecture (from Parkinson & Kinnan, n.d.) 

Next, we discuss the virtualization architectures that are designed for, or are 

applicable to the space domain.  
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IV. VIRTUALIZATION ARCHITECTURES USED IN SPACE 

In this chapter, we survey a selection of virtualization architectures that are 

applicable to the space domain (see Table 5). These architectures have been selected 

based on their use in space or their consideration by the space community for future use. 

We discuss how each architecture is being used by the space community, its basic design 

and what processors and operating systems it supports. We focus on how each 

architecture supports the real-time requirements of its applications and provide 

comparative analysis. We also review some virtualization architectures that have space-

relevant attributes—such as real-time process support, high assurance properties or 

space-qualified RTOS compatibility—that make them worth surveying for possible space 

application.  

Our analysis of each virtualization architecture is based on a variety of 

characteristics including its maturity within the space community, licensing, 

documentation availability, standards compliance and hardware and software capability. 

We also consider the functionality of the virtualization layer with regards to its memory 

footprint and trusted computing base. 
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Table 5.   Summary of Virtualization Architecture Key Attributes 
Hypervisor License Internal Design Development 

Tools 
Documentation Hardware 

Support 
API and 
Guests 
supported 

Standards Footprint 
(kernel) 

Performance 
Evaluation 

Space 
use 
status 

INTEGRITY 
Multivisor 

Proprietary Security Kernel Wind River 
Workbench 

Unavailable 
openly 

(see 
INTEGRITY 
RTOS) 

All guests 
(designed to be 
OS agnostic) 

DO-178B, 
ARINC-
653, EAL 
6+ 

Unknown No No 

VxWorks 
hypervisor 

Proprietary Configurable Yes Unavailable 
openly 

(see VxWorks 
Hypervisor) 

All guests 
(designed to be 
OS agnostic) 

None Depends, 
highly 
modular 

No No 

XtratuM Open-source 
GPL or 
proprietary 

Monolithic kernel No Yes X86, ARM, 
PowerPC 

LithOS, 
paRTiKle, 
Linux, RTEMS 

Unknown 10K lines 
of code 

ESA ESA  

ARLX Permissive 
after 
subscription 

Xen-based No Some ARM, x86 All guests 
supported by 
Xen 

DO-178C ~70K Yes Yes 

PikeOS proprietary Microkernel Yes Some X86, MIPS, 
PowerPC, 
ARM, SPARC 
V8/LEON 

Linux; RTEMS; 
POSIX, Ada 

DO-178B, 
MILS and 
ARINC-653 

Unknown NASA NASA 

AIR Open-source Microkernel Unknown No All All 
guests(designed 
to support most 
OSes) 

ARINC-653 Unknown Yes (ESA) 
Current status 
unknown 

Unclear 

NOVA Open-source Separation kernel No Yes X86 All guests (via 
emulation) 

None 9k lines of 
code 

No No 

X-hyp proprietary Unknown Unknown No ARM-9, 
Cortex 

FreeRTOS, 
Linux, RTEMS 

None Unknown No No 

Proteus Unknown  No No PowerPC All guests (via 
full 
virtualization) 

None 15 Kb No No 

RT-Xen Open-source Xen-based No No All Xen Linux guests 
(unspecified 
versions) 

None Unknown No No 
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A. XTRATUM 

XtratuM is an open-source7 type-1 hypervisor that uses paravirtualization (Crespo 

et al., 2014) and is designed to provide temporal and spatial isolation for safety critical 

applications (“XtratuM Hypervisor,” 2012). XtratuM is based on the concept of robust 

partitioning and allows processes of different security levels to run concurrently. XtratuM 

is designed to reflect ARINC-653 standards, but is not fully ARINC-653 compliant 

because of the responsibilities delegated to partitions. The XtratuM hypervisor works 

with the x86, ARM and PowerPC processors (“XtratuM Product,” n.d.; Zhou, 2009), as 

well as the LEON2, 3, and 4 implementations of the SPARC processor. XtratuM can host 

LithOS, RTEMS, PaRTiKle, and Linux operating systems.  

To the best of our knowledge, XtratuM has yet to be deployed in space however 

considerable research is in progress focusing on its ability to support space systems. 

Since 2012, the ESA has been conducting a set of studies to evaluate the effectiveness of 

using time-space partitioned (TSP) architectures in space, using XtratuM as the base for 

this research. These studies are conducted under the ESA’s EagleEye virtual space 

mission intended for software testing (“New-generation Aircraft,” n.d.). As of 2013, the 

EagleEye TSP project has tested XtratuM version 3.4 with support for the LEON3 

processor with a memory management unit (Bos et al., 2013). In 2014, Carrascosa et al. 

(2014) documented porting XtratuM to the LEON4 multicore processor in support of the 

ESA’s ongoing efforts to test and evaluate XtratuM’s performance with multicore 

processors. 

NASA (n.d.) also carried out some research with the XtratuM hypervisor during 

the 2012 Internal Research and Development Program (IRAD) that sought to demonstrate 

the benefits of virtualization on the LEON 3 flight processor.  

 

7 Commercial license also available. 
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1. Design 

XtratuM, illustrated in Figure 19, is designed as a “monolithic, non-premptive 

kernel” (“XtratuM Product,” n.d.). The entire hypervisor layer operates in supervisory 

mode and no process may preempt it (see Figure 18). The hypervisor layer is responsible 

for virtualizing the machine’s CPU, memory, interrupts and other peripheral devices. 

 
Figure 19.  XtratuM Architecture (from “XtratuM Hypervisor,” 2011). 

2. Partition Management 

Partitions are the independent execution environments managed by the XtratuM 

hypervisor. Partitions can be an application, an RTOS or a general purpose operating 

system. XtratuM partitions do not share any of their address space. Partitions are started 

automatically after the XtratuM hypervisor completes the initial boot sequence. There are 

two types of partitions supported by XtratuM: system partition and user partition. System 

partitions are also referred to as supervisor partitions in some literature, but the 

developers changed this terminology to system partition to avoid confusion with 

hardware modes (“XtratuM Hypervisor,” 2011). System partitions are able to suspend, 

resume, halt or reset the execution state of user partitions (Masmano, Ripoll, Peiró, & 

Crespo, 2010) through specific hypercalls. This activity is regulated by resource and 
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inter-process communication policies defined at configuration time for each partition. 

System partitions are able to manage the system but still rely on the hypervisor to access 

hardware. For multi-thread applications, the operating system or run-time support 

libraries on which the applications run must support threads (“Xtratum Hypervisor,” 

2011). This is different from the ARINC-653 specification for partitions, which isolates 

and manages threads and processes inside a partition through the use of a defined API. 

3. Memory Management 

XtratuM is designed to enforce spatial isolation with or without an MMU, though 

full spatial isolation is only guaranteed on versions of the hypervisor ported to processors 

with an MMU. For processors without an MMU (namely the Leon2), XtratuM uses the 

processor’s write protection registers to enforce isolation through memory write 

protection policies, which deny partitions the ability to write into another partition’s 

memory space. For MMU supported versions of XtratuM, a kernel memory manager 

module uses the MMU to enforce spatial isolation between partitions. If specified at 

configuration time, the memory manager can support authorized memory sharing 

between partitions for inter-partition communication (Masmano et al., 2010). 

4. Scheduling Management 

XtratuM implements an ARINC-653 cyclic scheduling policy in which time slots 

for partitions to interact with the processor are statically defined. XtratuM takes into 

account the overhead incurred with context switches that occur when one partition’s time 

slot is over and another partitions’ time slot begins. Since XtratuM offers deterministic 

processing, it knows the worst-case execution time (WCET) and the best-case execution 

time (BCET) of context switches and hypercalls. In order to make context switches as 

efficient as possible, XtratuM’s scheduling use the empirically determined BCET and 

WCET of context switches and any in-progress hypercalls to calculate worst-case delay. 

With this cost in mind, XtratuM can adjust execution time by factoring it into the allotted 

time slot (“XtratuM Hypervisor,” 2011). 
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5. Analysis 

The fact that XtratuM is part of an ESA initiative to research virtualization in 

space and many of its refinements have been motivated by space research distinguishes 

XtratuM from some of the virtualization architectures we survey here. Its open-source 

license and well-documented API make it an attractive architecture for projects with 

limited budgets. The one main drawback is the limited support it provides for both 

hardware and software.  

B. ARLX 

ARINC-653 Real-time Linux on Xen (ARLX) is a hypervisor developed and 

maintained by the Michigan-based company Dorner Works Ltd. (DornerWorks, n.d.). 

ARLX is a type-1 hypervisor based on the open-source Xen hypervisor, but with 

extensions DornerWorks claims make it a high safety and security assurance system. 

ARLX was designed based on the DO-178C8 certification standard and there is an 

initiative to get ARLX formally verified to Common Criteria Evaluation Assurance Level 

6+ (Studer, 2014). Some formal method analysis on ARLX has been performed, 

discussed later in this section.  

ARLX is available via subscription under a permissive license, meaning that with 

an initial purchase all source code is available and can be modified. ARLX is compatible 

with ARM and x86 family processors and supports any operating systems compatible 

with Xen (VanderLeest, Greve, & Skentzos, 2013). A Navy-fielded deployment of 

ARLX runs VxWorks and Integrity in guest domains (Santangelo, 2013).  

ARLX is currently being used on unspecified platforms by the Joint Tactical 

Networking Center, which is managed by the Navy’s Space and Naval Warfare Systems 

Command (SPAWAR). ARLX is also being used by the company sci_Zone, a NASA 

small business innovation research awardee, on its QuickSAT project. QuickSAT is a 

space-hypervisor that supports virtualized payloads and systems on CubeSATs and 

8 DO-178C replaced DO-178B in 2012.  
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MicroSATs. QuickSAT is being used in NASA research centers and by the Air Force 

Research Laboratory’s University NanoSat program (Santangelo, 2013).  

1. Design 

ARLX core architecture follows that of Xen, but it modifies the kernel and adds 

another privileged domain in addition to Dom0 to support input and output. The code 

base of ARLX is 30–50% smaller than the generic code base of Xen, which 

DornerWorks claims is over 150,000 lines of code. The designers of ARLX point out that 

ARLX is still a work-in-progress and that the hypervisor is in heavy development. As a 

result, some features, like minimized partition memory footprints, optimized partition 

switching mechanisms and full ARINC-653 compliance are still future projects (Greve & 

VanderLeest, 2013). The current status of these projects is unknown.  

In ARLX, the Xen kernel is modified so that it implements time and space 

partitioning according to the ARINC-653 standard. The typical Xen scheduler is replaced 

with the ARINC-653 scheduler. Additionally, an ARINC-653 memory manager replaces 

the traditional Xen memory manager in the Xen kernel. To the best of our knowledge, 

ARLX requires an MMU to enforce spatial isolation. The inter-partition ARINC-653 API 

is added to Xen’s communication architecture, which allows for ARINC-653 compliant 

inter-partition communication mechanisms (Greve & VanderLeest, 2013). The 

developers of ARLX define five security policy domains that are used to enforce 

information flow between partitions. Security domains refer to information flow levels 

and not to the guest domains running on top of Xen. These security domains are listed in 

Table 6.  
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Table 6.   ARLX Security Domains (from Greve & VanderLeest, 2013) 

SECURITY DOMAIN CONTENT 

ARLX_INIT Initialization read-only data for 
system startup 

ARLX_CONFIG 
Configuration data only written at 
system initialization. Read-only 

while system is running 

ARLX_XEN State of Xen hypervisor 

ARLX_DOM0 State of Xen Dom0 (privileged 
Domain) 

ARLX_DOMU State of Xen DomU’s (non-
privileged) 

 

Information flows from top down with two exceptions: Dom0 and Xen are able to 

communicate freely and each DomU can communicate if specified by configuration. 

There is no domain defined for the privileged I/O domain.  

2. Partition Management 

The ARLX Dom0 is designed to be as small and intended to be formally 

verifiable. Dom0 is still implemented by a Linux-based OS but the developers are 

considering using FreeRTOS instead—which has a smaller code base and has a certified 

version (SafeRTOS)—or some other certified OS, like INTEGRITY or VxWorks 

(Studer, 2014). 

ARLX features a privileged domain, separate from Dom0, which is responsible 

for I/O management between partitions. In standard Xen, Dom0 provides this 

functionality. ARLX reduces the trusted computing base of the Dom0 by isolating the I/O 

responsibilities into a separate domain. This design decision is based on the idea of Dom0 

disaggregation, which takes control logic out of Dom0 and distributes it throughout 

different domains, with the idea of making each domain small and easily verifiable 

(Murray, 2008). The privileged I/O domain also regulates bandwidth usage between 

partitions that share I/O devices. This feature is not required by the ARINC-653 standard, 

but the ARLX developers felt it was valuable since it can incorporate determinism into 

bandwidth usage for each partition. ARLX handles shared I/O by splitting shared I/O 

device drivers up, with half of the driver residing in the I/O domain and half residing in 

another DomU. The DomU’s portion of the driver contains the API to communicate with 
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the I/O domain. The I/O domain’s portion of the driver provides access to memory and 

registers through memory mapping. The architecture of ARLX is illustrated in Figure 20.  

 
Figure 20.  ARLX Hypervisor Environment (from Santangelo, 2013) 

3. Analysis  

ARLX is a unique architecture due to its integration of ARINC-653 compliance 

into a well-known open-source hypervisor. To our knowledge, ARLX is also one of the 

few virtualization architectures surveyed that has actually been deployed in space, i.e., 

via the QuickSat/Xen program. ARLX’s licensing is also an attractive feature since it 

allows developers to access and modify source code. ARLX, however, is still a work in 

progress as its developers attest, and lacks all the features of other architectures, 

including being fully ARINC-653 certified.  

DornerWorks is pursuing formal verification of the ARLX hypervisor, since its 

target is use in safety critical embedded systems. As part of this effort, it conducted an 

initial analysis of the security properties for the system (VanderLeest et al., 2013). This 

study found that there was substantial work required for the system to be considered high 

assurance. Though there are many benefits to leveraging Xen for ARLX, there are also 

drawbacks. There have been several high profile vulnerabilities exposed against the Xen 

hypervisor over the years (Kovacs, 2014; Apecechea, 2014) related to the fact that it was 

not built from the onset to be high assurance. Its code base is also much larger than other 

surveyed virtualization architectures, which have smaller code footprints to limit the 
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trusted computing base. In particular, ARLX’s addition of a second privileged domain 

under Xen increases its TCB.  

C. PIKEOS 

PikeOS is a proprietary virtualization architecture developed and maintained by 

the company Sysgo. PikeOS is a separation kernel-based type-1 hypervisor that supports 

paravirtualization and hardware-assisted virtualization.9 PikeOS is DO-178B, MILS and 

ARINC-653 compliant and is in the process of becoming formally verified, a requirement 

for Common Criteria EAL 6 certification (“Publishable Summary,” 2012). PikeOS is 

portable to the PowerPC, x86, ARM, MIPS and SPARC V8/LEON processor families. 

PikeOS can run Linux and RTEMS as guest operating systems. It supports multiple APIs 

including POSIX, Ada and RTEMS. PikeOS is also compatible with a certifiable IP stack 

and offers communication encryption and binary verification (“Products PikeOS 

Hypervisor,” n.d.). 

PikeOS (see Figure 21) was used as the hypervisor in NASA’s 2013 Internal 

Research and Development Program. This program explored flight hardware 

virtualization for science data processing, to consolidate multiple physical processors to 

reduce their size, weight and power consumption and to increase security on flight 

systems (“Fall 2013,” 2013). Their test configuration consisted of PikeOS run on a 

LEON3 processor, supporting ElinOS (Sysgo’s verison of embedded Linux) in one 

partition and custom Goddard Space Flight Center (GSFC) software running in another 

partition. The ElinOS VM was used to do non-critical science data processing that did not 

have real-time requirements, and the GSFC partition was used as the core flight executive 

that handled critical functions with hard real-time requirements. The project 

demonstrated that when the ElinOS partition crashed, it had no effect on the GSFC 

partition. The 2013 tests with PikeOS also demonstrated that multiple flight processors 

can be booted in virtual machines and that virtual machines can be rebooted individually 

mid-flight (NASA, n.d.; Cudmore, 2013).  

9 Paravirtualized virtual machines can also leverage hardware assisted virtualization if the processor 
supports it.  
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Figure 21.  PikeOS Architecture (from Lehrbaum, 2013) 

1. Design 

There are two layers to the PikeOS architecture: the microkernel layer and the 

virtualization layer (see Figure 3). The microkernel is responsible for managing address 

space separation, partition scheduling, inter-partition communication and enforcing 

communication control and access measures for threads and tasks (Tverdyshev, 2011; 

Müller, Paulitsch, Tverdyshev, & Blasum, 2012). The virtualization layer is responsible 

for implementing the API for partitions and guest applications.  

PikeOS has two primary abstractions: tasks and threads. Threads are always 

associated with a task and execute based on the task’s state. Tasks consist of a virtual 

address space, threads and other resources that they might be allocated. The microkernel 

controls all resources in the system, is responsible for managing communication for tasks 

and threads and delegating use of resources to partitions based on the security policy set 

at configuration time (Tverdyshev, 2011; Baumann, Bormer, Blasum, & Tverdyshev, 

2011).  

2. Partition Management 

Each partition consists of a set of tasks, threads and communication ports (as 

defined in the ARINC-653 API). It is the job of the virtualization layer to instantiate these 
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partitions, mediate communication with other partitions based on a pre-defined security 

policy and control access to system resources.  

3. Memory Management 

The microkernel has a memory manager that assigns address space through 

memory pages to the partitions. Partition memory pages are statically defined at 

configuration time and assigned to partitions by the memory manager at run-time. At run- 

time, each partition can dynamically store data and allocates memory to its applications 

through these memory pages (Baumann et al., 2011).  
 

4. Scheduling Management 

PikeOS supports a combination of scheduling methods including priority-based, 

time-driven and proportional sharing scheduling. Using a combination of scheduling 

methods ensures that hard real-time threads get scheduled first and prevents low-priority 

threads from being starved out of processing time (Kaiser, 2007).  

Partitions running on PikeOS are statically assigned a priority level, by which the 

microkernel schedules partitions based on this priority. In addition, PikeOS uses what are 

referred to as “time domains” in which priority-based scheduling of threads is based on 

their “class,” i.e., time-driven, event-driven or non-real-time. Event-driven and time-

driven threads are assigned a higher priority than other threads. Threads are grouped into 

time domains and can only execute when their time domain is active, no matter their 

priority.  

There are two types of time domains: foreground and background domains. The 

foreground domain is always running, and the background domain is scheduled by the 

microkernel based on a static schedule determined at configuration. The background 

domain can run at the same time as one other domain. Event-driven threads are assigned 

to the background domain. The highest priority task between the two active domains gets 

scheduled first. Low priority threads get executed when all event and time-driven threads 

within their time domains are completed (Kaiser, 2007; Kaiser, 2009). 
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5. Analysis 

PikeOS exhibits many of the properties required to support multiple software 

environments in space. It has a small trusted computing base with limited complexity, it 

is certified and compliant with many of the primary standards recognized by the space 

community and has demonstrated its robustness by protecting highly critical domains 

when another domain fails. PikeOS is also compatible with a number of relevant space 

processors, including the MIPS processor, which is not supported by XtratuM. PikeOS is 

proprietary and it is unclear how accessible its source code is to developers, which, if 

limited, might be a drawback. Sysgo also does not appear to have a substantial presence 

in the space community with its other products, including a modified version of Linux for 

embedded systems, which might limit PikeOS’s use if other virtualization architectures 

from recognized vendors are deemed more compatible with legacy systems.  

D. AIR 

ARINC-653 Interface in RTEMS (AIR) (Rufino & Filipe, 2007), is a 

virtualization architecture that supports the execution of safety critical real-time 

applications and non-real-time applications concurrently. AIR, like XtratuM, was a 

project initiated by the ESA as part of their assessment of adapting time and space 

partitioning software for space systems. The original AIR was a proof-of-concept project 

to build an ARINC-653 system specifically for the space domain. A final report for the 

AIR project published in 2007 provided the foundational architecture for an ARINC-653 

compliant system for space. Since then, AIR-II seeks to evolve AIR from proof-of-

concept to a deployable product (Rufino, Craveiro, Schoofs, Tatibana, & Windsor, 2009). 

As of 2014, AIR is referenced as an open-source product offered by the international 

aeronautics company, GMV (“air Robust,” n.d.). According to GMV, AIR is currently 

TRL level 5, which means the system has been tested and prototyped in a relevant 

environment. The status of AIR testing and on which space systems AIR may be 

considered for deployment in the future are both unknown. AIR is designed to be 

hardware and software independent. 
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1. Design 

AIR is comprised of three primary components: the AIR partition management 

kernel (PMK), the real-time operating system kernel for each partition (POS), and the 

ARINC-653 APEX API. The PMK is a microkernel responsible for partition scheduling 

and inter-partition communication. Each POS kernel is abstracted through the POS 

adaptation layer which allows the architecture to be kernel independent. 

2. Scheduling Management 

AIR has an ARINC-653 scheduling manager within the PMK that ensures 

priority-based partition scheduling, as well as POS schedulers that are responsible for 

scheduling processes within each partition. AIR also includes “timeliness enhancement 

mechanisms” within the PMK layer, which are meant to further ensure robust scheduling 

within the system (Rufino et al., 2009). One enhancement mechanism is mode-based 

scheduling, which give the option of switching to different scheduling modes for a 

partition. Another is process deadline monitoring, whereby the PMK verifies that earliest 

deadline tasks in a partition are completed by when they are intended. If they are not, 

then the PMK reports this to the ARINC-653 compliant health monitor.  

3. Memory Management 

AIR accounts for memory protection and management with the use of the 

processor’s MMU or MPU. Each partition has its own page directory. Memory pages and 

shared libraries can be shared between partitions. POS and APEX code can also be 

shared across partitions (“Air Overview,” 2011). Memory and code sharing between 

partitions is done based on pre-defined inter-partition communication policies established 

at configuration time (Rosa, 2011).  

4. Analysis 

Notable, attractive attributes of the AIR virtualization architecture, illustrated in 

Figure 22, include the fact that it is processor and operating system/application agnostic, 

and that it is open-source. The fact that it incorporates the ARINC-653 functionalities and 

API make it a robust virtualization architecture to consider in the space domain. The 
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main drawback of the AIR project is its status as a prototype, though it does appear from 

GMV documentation that the hypervisor is being actively maintained and developed. 

There is no cunent documentation on the AIR hypervisor being fielded in any space 

system. 

User- level Unprivileged 

Operating System level 
Unprivileged POS Ada ptat.o " l..ayu 

AIR Partition Management Kernel (PMK) H ... lth Mnnitnr 

Figure 22. AIR Architecture (from Rosa, 2011 ; Rufino et al. , 2009). 

E. ADDITIONAL VIRTUALIZATION ARCIDTECTURES 

The following section briefly surveys several vi1i ualization architectures wo1i hy 

of mention, despite lack of consideration by the space community and/or lack of 

sufficient documentation to survey adequately. 

1. Green Hills Multivisor 

Green Hills Software 's INTEGRITY multivisor is a separation kemel based 

virtualization architecture based on the INTEGRITY RTOS kemel, but with the added 

ability to support paravirtualized operating systems and leverage hardware virtualization 

assistance to fully viiiualize operating systems. The multivisor can supp01i multiple 

operating systems-including Windows, Linux, VxWorks and Android-and multiple 

processors, both single and multicore, including IntelVT, ARM, FreeScale and any 

processor supported by the INTEGRITY RTOS. To our knowledge, the INTEGRITY 

Multivisor has not been deployed in space systems. It is marketed primarily to the 

telecommunications and avionics industries; however, the use of the INTEGRITY kemel 
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is space systems makes the INTEGRITY multivisor a potentially deployable architecture 

in the future (“Integrity Multivisor Datasheets,” n.d.).  

2. Wind River Hypervisor 

The Wind River hypervisor is an embedded type-1 hypervisor (“Wind River 

Hypervisor,” n.d.) designed to host operating systems and applications of mixed 

criticality and with different timing requirements, from hard real-time to general-purpose 

on single or multicore processors. The Wind River hypervisor supports full and 

paravirtualization of operating systems and can leverage hardware-assisted virtualization 

features on processors. It is designed to host any operating system or application through 

the use of the VxWorks API and is designed to run on top of a variety of different 

processor families, including ARM, PowerPC, and Intel.  

The hypervisor, like the VxWorks operating system, is highly configurable and 

offers different scheduling options on single or multicore processors, different means of 

configuring external devices and different ways to virtualize each partition (full or partial 

virtualization). The hypervisor is responsible for scheduling partitions (called virtual 

boards) and uses time-slice or priority-driven methods. Threads are completely event-

driven, meaning they are only executed when an event prompts them. Developers have 

the customization option of replacing the hypervisor scheduler. External device driver 

management is also configurable: drivers can be located within partitions or within the 

hypervisor and can be shared or private resources (“Wind River Hypervisor,” n.d.).  

The hypervisor is not known to be compliant with any relevant standards, though 

Wind River offers a separation kernel for systems requiring high assurance (not part of 

this survey). The relationship between these two products is unclear. To our knowledge, 

the Wind River hypervisor has not been deployed or considered for deployment in any 

space system. The hypervisor is marketed primarily to the industrial control and 

telecommunications industries.  
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3. SafeHype 

SafeHype is a prototype small, lightweight satellite hypervisor being designed by 

Intelligence Automation, Inc. based out of Rockville, Maryland. In 2013, the firm was 

awarded a $150,000 grant by the Defense Advanced Research Projects Agency in order 

to develop the hypervisor (“SBIR SafeHype,” n.d.). Unfortunately, there is not an 

extensive amount of information available through the open literature. SafeHype is a 

small hypervisor meant to virtualize satellite payloads and support dynamic provisioning 

of virtual machines mid-flight (“SBIR SafeHype,” n.d.). The hypervisor is designed to 

make use of hardware support and paravirtualization. It is claimed the code base of the 

hypervisor is small enough to be formally verified (“Intelligent Automation,” n.d.). 

SafeHype is a project that may yield a viable virtualization system for future spacecraft. 

The mechanism for dynamically provisioning virtual machines mid-flight is interesting 

though, unfortunately, there is no information on how this is accomplished.  

4. NOVA 

NOVA is a research “microvisor” developed by Udo Steinberg and Bernhard 

Kauer from the Technical University of Dresden in Germany. Though not designed for 

space systems, it is an interesting architecture that has some attributes that are important 

to the space community, including a small size and spatial and temporal isolation 

(“NOVA Virtualization,” n.d.).  

NOVA is a small hypervisor, or “microvisor,” that runs on x86 processors that 

support the Advanced Configuration and Power Interface, an open industry standard. It 

can also run under QEMU as a virtual machine. NOVA has its own kernel and 

application program interface and makes use of hardware virtualization support available 

on the x86 processor.  

The NOVA environment consists of three layers: a microhypervisor running in 

kernel mode, the user-level environment and the VM layers or domains. Security and 

performance-critical functionalities are handled inside the microvisor. All other 

functionalities run in user mode outside of the microvisor. The microvisor is responsible 

for interrupt handling, scheduling and memory management. NOVA uses an object-
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oriented interface to delegate and regulate access to resources. There are five basic kernel 

objects (see Table 7). When one of these objects is created by a domain, it gets associated 

with a “capability” that belongs to the domain creating the object. Depending on that 

domain’s policy, access to these objects can be shared with other domains.  

Table 7.   The Five Kernel Objects in the NOVA Microvisor (from Steinberg & 
Kauer, 2010) 

Kernel Object Function 
Protection Domain Spatial Isolation 
Execution Context Protection Domain Thread and CPU execution 
Scheduling Context Temporal Isolation 
Portals Intra-partition (domain) communication 
Semaphores Execution synchronization 

 

What makes NOVA an interesting virtualization solution for space is the fact that 

it has a small code base, has a means of controlling access to critical resources through its 

capability-based interface and is open-source. The object-oriented approach to access 

control employed by the NOVA microvisor is similar to the proprietary INTEGRITY 

kernel, which regulates information flow through statically defined policies for subjects 

and objects (discussed in Chapter III). The main draw backs of the microvisor are the fact 

that it is only compatible with the x86 processor, relies on processor virtualization 

support and does not make any claim to support real-time systems.  

5. Proteus 

Proteus was designed as a research project of the Heinz Nixdorf Institute in 

Germany as an open-source type-1 hypervisor able to run general-purpose operating 

systems and real-time operating systems concurrently. Proteus supports both full and 

paravirtualization on PowerPC multicore processors (Gilles, Groesbrink, Baldin, & 

Kerstan, 2013) and does not rely on hardware support for virtualization. Figure 23 

illustrates the architectures of the Proteus Hypervisor.  
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Figure 23.  The Proteus Hypervisor Architecture (from Baldin & Kerstan, 2009) 

There are two execution modes on the PowerPC processor that the hypervisor 

uses: applications run in problem mode; interrupts, the virtual machine scheduler and the 

inter-partition communication manager run in supervisor mode. Device drivers and other 

non-critical resources are run in a separate partition on top of the hypervisor and run in 

problem mode. Problem mode is subdivided into two logical modes: VM privileged 

mode and VM problem mode. System calls made by the virtual machine are executed in 

the VM privileged mode.  

Proteus uses the PowerPC MMU for memory management and each VM running 

on the hypervisor has its own dedicated address space that is statically defined. For 

temporal isolation, Proteus supports different configurations of core support for virtual 

machines. VMs can be dedicated to one core or can be divided among multiple cores. 

The hypervisor uses a fixed time slice approach to scheduling, based on statically 

assigned priorities.  

Proteus is an interesting virtualization architecture to consider for space due to its 

claimed support for real-time systems, the fact that it does not rely on hardware 

virtualization support and its compatibility with the PowerPC processor family, which is 

a common space system processor (Ginosar, 2012). It is unclear however, what type of 

real-time systems Proteus can actually support and whether or not the hypervisor is 

suitable for hard real-time applications.  
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6. X-Hyp 

X-Hyp is a type-1 embedded hypervisor that supports paravirtualization and is 

designed specifically for real-time systems. The hypervisor comes with a paravirtualized 

version of FreeRTOS and supports Linux, RTEMS and µcos and is compatible with the 

ARM-9 and Cortex processors. X-Hyp is available under both commercial licensing and 

open-source. The hypervisor has its own API with 54 hypercalls for the ARM processor. 

Figure 24 shows the basic architecture of X-Hyp. X-Hyp has little documentation but 

supports some valuable characteristics that make it worth mentioning, including its 

support for three RTOSs used in space and its availability as an open-source product.  

 
Figure 24.  The Basic X-Hyp Architecture (from “X-hyp Paravirtualized,” n.d.) 

7. RT-Xen 

RT-Xen is a Washington University project focused on incorporating soft real-

time guarantees into the open source Xen hypervisor. The Office of Naval Research 

awarded a three-year grant to make RT-Xen a real-time virtualization architecture for 

embedded systems (“RT-Xen Project,” 2013). RT-Xen incorporates resource 

reservations into domain scheduling and adds real-time schedulers at the kernel and the 

domain level. The kernel scheduler is responsible for managing the scheduling of each 

domain based on configuration data provided by Dom0. The configuration data includes 

priority levels of the domains, their allotted time slice, the processor cores they are 

allowed to run on and the amount of processor power they get allocated. This scheduler 

uses either an earliest deadline first or rate monotonic policy to manage domain 

scheduling. Within each domain, there is another real-time scheduler responsible for 

scheduling its own processes (Xi, Wilson, Lu, & Gill, 2011; “Xen Project: RT-Xen,” 

n.d.). 
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Though not designed for space systems, RT-Xen is an interesting technology that 

might be considered in conjunction with ARLX. Whereas ARLX is designed for high 

assurance, RT-Xen is designed for real-time guarantees, both of which are attributes 

required for mission-critical space systems. RT-Xen, however, is only meant to meet soft 

real-time requirements and suffers from the same drawbacks as ARLX, namely that it is 

based on a large, legacy code base not intended for high assurance applications.  
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V. REMOTE FINGERPRINTING OF VIRTUALIZED 
OPERATING SYSTEMS 

In this chapter, we discuss our work in measuring and comparing fingerprints for 

virtualized operating systems, employing methods explored previously by Chen et al. 

(2008). We use TCP timestamp measurements to derive a timestamp skew, which prior 

work shows can be used to characterize some operating systems remotely. Our work 

focuses both on (1) validating prior experiments with fingerprinting general-purpose 

operating systems under different virtualization scenarios, and (2) extending these results 

to real-time systems, using Real-Time Linux (i.e., Linux with the PREEMPT_RT patch 

enabled) as a target.  

A. MOTIVATION 

The ability to remotely fingerprint a guest operating system running as a virtual 

machine is valuable for the reconnaissance phase of system exploitation. Since remote 

fingerprinting does not require direct access to the machine, the fingerprint of virtualized 

operating systems can help detect virtual honeynets and enable adversaries to exploit 

hypervisor-specific vulnerabilities, if the fingerprint of the guest OS leaks information 

about their underlying hypervisor. To the best of our knowledge, there is no prior work 

measuring TCP timestamp skew on real-time operating systems, either running directly 

on hardware or as a guest on a hypervisor.  

B. TEST METHODOLOGY  

In our experiment, we compare the TCP timestamp skew variation between 

operating systems running on bare metal and on a virtualized platform. We do this by 

replicating prior work in TCP timestamp fingerprinting.  

1. TCP Timestamp Option 

The TCP timestamp option (TSopt field) is an optional 32-bit field in the TCP 

packet header that was first introduced in 1992 in RFC 1323. Its purpose was to improve 

performance and provide reliable operation over paths with high speed (Jacobson, 1992). 
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The timestamp is a number that represents the perception of time for each party in every 

packet of a TCP flow. RFC 1323 states that the timestamp measurement should be taken 

from a virtual clock that “must be at least approximately proportional to real time” 

(Jacobson, 1992, section 3.3). The virtual clock is not required to be synchronized with 

the system clock and is often independent of a system’s adjustments if network time 

protocol (NTP) is enabled. This virtual clock is usually reset every time a system is 

rebooted. The TCP timestamp clock increases monotonically with a predefined frequency 

between 1 and 1,000 Hz.  

The timestamp option is enabled if the initiator of the TCP flow includes a TSopt 

payload with a timestamp value in its original SYN packet and if the reply indicates that 

both hosts implement the option. For the fingerprinting methodology we employ, we 

require the remote host to support the TCP timestamp option and have open ports that can 

be used to initiate a TCP session.  

2. Prior Work 

Chen et al. (2008) extend techniques originally introduced by Kohno et al. (2005) 

for remote OS fingerprinting. Chen et al. (2008) examine timestamp skew behavior 

between (unspecified versions of) Windows and Linux, both running on bare metal and 

running as virtualized guest operating systems on either VMWare or Xen. In their 

experiment, they send several hundred SYN packets to the target host for an unspecified 

amount of time. They calculate the frequency at which the TCP timestamp clock 

increases and use this to calculate the skew of the target’s time source. This is achieved 

by comparing the actual time the target’s response packet is received and the time 

recorded in the response’s TCP options. The perceived skew is measured over time and 

used to generate a mean squared error (MSE) or randomness indicator associated with 

the target. They compare the MSEs associated with bare metal and virtualized targets, 

concluding that virtualized operating systems can be fingerprinted based on MSE 

behavior. In particular, Chen et al. (2008) suggest skew can be used to distinguish 

virtualized systems from bare metal systems, and to distinguish identical guest OSes 

hosted on different hypervisors. 
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C. TEST PLAN  

We conduct all tests in an isolated environment on a small local network. Our test 

environment consists of five Optiplex 755 desktop machines with Intel Duo Core CPUs 

and 8GB of RAM. One of these machines, called sniffer, serves as the active host 

performing remote fingerprinting. The remaining machines (M1, M2, M3, M4) act as 

targets in various configurations (see Table 8). Details of the versions of the hypervisors 

and operating systems used in the M1–M4 host configurations are summarized in Table 

9. The sniffer machine employs the same version of Fedora 19 used in the target host 

configurations. All virtualized configurations are run in full virtualization mode, meaning 

the guest operating system is unaware that it is being virtualized. Xen supports full 

virtualization by using Qemu (see Chapter II).  
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Table 8.   Target Host Configuration Summary  

NOTATION CONFIGURATION Type of 
Virtualization IP ADDRESS MACHINE 

[F] Fedora 19 bare metal - 10.10.10.2 M1 
[F/F] Fedora 19 running VMWare with Fedora 19 guest Full 10.10.10.21 M1 
[W/F] Fedora 19 running VMWare with Windows 7 guest Full 10.10.10.22 M1 
[RT/F] Fedora 19 running VMWare with PREEMPT_RT guest Full 10.10.10.23 M1 

[X] Xen bare metal - 10.10.10.3 M2 
[F/X] Xen running Fedora 19 guest / DomU Full 10.10.10.31 M2 
[W/X] Xen running Windows 7 guest / DomU Full 10.10.10.32 M2 
[RT/X] Xen running PREEMPT_RT guest / DomU Full 10.10.10.33 M2 

[RT] PREEMPT_RT bare metal - 10.10.10.4 M3 
[W] Windows 7 bare metal - 10.10.10.5 M4 

[F/W] Windows 7 running VMWare with Fedora19 guest Full 10.10.10.51 M4 
[W/W] Windows 7 running VMWare with Windows 7 guest Full 10.10.10.52 M4 
[RT/W] Window 7 running VMWare with PREEMPT_RT guest Full 10.10.10.53 M4 

Table 9.   Target Host Software Summary 

Name VERSION 
Fedora 19 32-bit 3.14.23-100.fc19.i686.PAE Linux kernel 
Windows 7 32-bit Windows 7 Professional 6.1.7601 Service Pack 2 
Linux with PREEMPT_RT patch Ubuntu 12.04.3-desktop-i386 with the Linux 3.12.1-rt4 kernel 
VMWare VMWare Workstation 10.0.3 build-1895310 
Xen Xen-3.0-x86_64 
Xen Dom0 Debian 3.2.0-4-amd64 
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In the test environment: all machines are connected to a local switch; IP addresses 

are statically assigned; firewalls and Network Time Protocol services are disabled on 

operating systems and all hypervisors use bridged devices for networking. 

1. Hardware and Software Decisions  

The intent of our test environment and target host configurations is to replicate 

prior work as closely as possible; however, Chen et al. (2008) did not indicate the 

specific versions of operating systems or hypervisors they employ. Further, Kohno et 

al.’s (2005) experiments, cited by Chen et al. (2008), employ software that (presumably) 

was current circa 2005. We had no selection criteria beyond VMWare Workstation, Xen 

and some Linux distribution, considered current as of 2005 or 2008. Thus, selecting 

newer software was not a criterion for us. 

Hardware decisions were based on the availability of five machines with identical 

physical profiles. We chose VMWare Workstation 10 because we were unable to obtain 

an older version of VMWare. Our choice of Windows 7 Service Pack 2 was based on its 

compatibility with VMWare Workstation 10 and its status as an older but still heavily 

used Windows distribution. We chose Xen release 3.0 with Debian running in Dom0 

because installation instructions were readily obtainable. We chose Fedora 19 because 

one of our planned10 target configurations used RTEMS, whose build instructions 

required Fedora 19. We chose real-time Linux using the PREEMPT_RT patch because it 

is open-source and readily available. Our decision to build real-time Linux using Ubuntu 

12.04-LTS with the PREEMPT_RT patch was based on forum recommendations (Ask 

Ubuntu, n.d.) suggesting this is a stable distribution for which the patch works, and based 

on availability of patch instructions.  

2. Test Execution 

For each test configuration, we capture two separate TCP sessions with sniffer, 

one 90 minutes long and one 10 minutes long. For each session, we probe each host 

10 Later, we abandoned employing RTEMS in our experiments, due to difficulty in configuring the 
RTOS to run on our physical machine profile. 
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configuration through banner grabbing with netcat. During each session, we capture all 

traffic using tcpdump. Table 10 summarizes the ports used for each operating system. 

Chen et al. (2008) only capture SYN packets, whereas we capture all packets in the 

session.  

Table 10.   Ports/Services Used to Generate TCP traffic 
OS PORT SERVICE 

Fedora  22 SSH 
Windows 445 Active Directory 
Xen (Debian Dom0) 111 RPC 
PREEMPT_RT 22 SSH 

 

To obtain TCP timestamp values from a TCP session, we employ a Python script 

(tcp_skew.py) written by Russell Fink of the University of Maryland, Baltimore (Fink, 

n.d.) to parse the packet capture. For each packet, this script extracts the time recorded in 

the options field of the TCP packet (T) and the timestamp recorded by tcpdump running 

on sniffer (t). Figure 25 shows sample output from this script.  

 
Figure 25.  Example Output from tcp_skew.py Code 

We normalize measurements for each session by subtracting the time associated 

with the start of packet capture, using another script (tcp_clock.py). In particular, this 

script calculcates (Ti - T0) for TCP timestamps and (ti - t0) for tcpdump timestamps. Using 

these values, we adapt the formula of Chen et al. (2008) for calculating the target’s clock 

T t 
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frequency. Chen’s original formula is F = (T1 - T2) / (t1 - t2). We use F = (Tlast - T0) / (tlast - 

t0), believing this may provide a similarly accurate reading. We validate this assumption 

in testing (see Observation 2). 

We use the derived frequency F for each operating system to generate clock 

readings. We translate TCP timestamps into a set of clock readings following Chen et al. 

(2008), by calculating (Ti - T0)/F. There are two clocks that can be compared with these 

values: the time elapsed locally (xi = ti - t0) and the time elapsed on the target (wi = (Ti - 

T0)/F). For each configuration, we generate a scatter plot of the target’s skew, plotting 

time elapsed on sniffer (xi) on the x-axis and the skew (yi = wi - xi) on the y-axis. 

Appendices A through G include all graphs generated for our experiment.  

Given the calculated skew, we use Chen et al.’s (2008) method to calculate the 

MSE for each configuration. We use linear least-squares fitting to find a best-fit line, f(x) 

for the timeseries data. We calculate the MSE for the best-fit line by adding the squares 

of the offsets and dividing by the number of TCP packets in the traffic capture, N (See 

Figure 26). Chen et al. (2008) characterize the MSE as a randomness indicator, to be 

used as the baseline for comparison between bare-metal and virtualized operating 

systems. 
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Figure 26.  MSE Equation 

3. Test Notation 

Given the number of configurations we are testing, we require a simplified means 

of characterizing our observations. We have therefore developed configuration notation 

for the purposes of summarizing individual tests and sets of tests (see Tables 8 and 11). 

In cases where we describe multiple configurations, we use variables. For example, 

MSE[A/X] is equivalent to the set MSE values MSE[F/X], MSE[W/X], MSE[RT/X]. 

Comparing the MSE values MSE[A/F] and MSE[B] is equivalent to comparing all pairs 

between sets {MSE[F/F], MSE[W/F], MSE[RT/F]} and {MSE[F], MSE[W], MSE[X], 

MSE[RT]}. The notation MSE[RT-S] indicates MSE[RT-1FF] and MSE[RT-1RR]. 
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Similarly, comparing MSE[RT-S/F] and MSE[RT-T/W]} is equivalent to considering all 

pairwise comparisons between sets {MSE[RT-1FF/F], MSE[RT-1RR/F]} and {MSE[RT-

1FF/W], MSE[RT-1RR/W]}. When considering sets of MSE values S1 and S2, we abuse 

notation: S1≈S2 means ‘the MSE values of S1 are similar to those of S2’, S1>S2 means 

‘the MSE values of S1 are large compared to those of S2,’ and S1≠S2 means ‘the MSE 

values of S1 are dissimilar to those of S2.’ 

Table 11.   Experiment Notation Summary 
Notation Meaning 

Ti TCP timestamp i 
ti tcpdump timestamp i 
F Frequency of target configuration 
xi Time elapsed on sniffer (x-axis of scatter plot) 
wi Time elapsed on target configuration (based on TCP timestamp) 
yi TCP clock skew (y-axis of scatter plot) 

RT-1FF PREEMPT_RT configured with sshd process prioirty 1, FIFO scheduling 
RT-1RR PREEMPT_RT configured with sshd process prioirty 1, round-robin scheduling 

 

D. ANALYSIS 

We validate many of Chen et al.’s (2008) original findings; however, we find one 

of their conclusions—that virtualized operating systems can be easily fingerprinted 

because of their dramatically different TCP time skew variation—is not entirely 

convincing in light of our experimentation with some (previously unevaluated) 

configurations. We divide the analysis that follows into a series of individual 

observations. 

1. Observation 1: MSE Is Not Sensitive to Session Length 

Chen et al. (2008) do not specify the amount of time they run each packet capture 

but state that experiments conclude within “a few minutes.” We want to determine if the 

length of the packet capture has any impact on the MSE calculation. We do this by 

comparing two packet captures for each bare metal target ([F], [W], [X] and [RT]). We 

find that that the average MSE difference between 10 minute and 90 minute captures is 

0.026ms, leading us to conclude that the capture length does not have a significant impact 
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on MSE calculation. Figure 27 shows the time series data for [F] under both time frames 

(see Appendix A and B for other configurations). The time values on these two packet 

captures are different since packet times vary for each packet capture. This explains the 

visually incongruous lines in Figure 27. The skew behavior however is comparable. We 

conclude that Chen et al.’s (2008) “a few minutes” timeframe provides a relatively stable 

MSE calculation, as longer time frames do not significantly impact these calculations. 

Based on this observation, we conduct all subsequent tests using 10-minute packet 

captures. 

 
Figure 27.  Configuration [F], Skew vs. Time, 1.5 hour Capture (Blue) and 10-

Minute Capture (Red) 

2. Observation 2: Frequency Calculation Appears Relatively Stable with 
Respect to Packet Selection 

Chen et al. (2008) present a method for measuring the operating systems’ TCP 

clock frequency remotely. As explained in Section 3, we modify their equation by 

looking at the first and last timestamps: F = (Tlast - T0) / (tlast - t0). We verify that our 

modified equation has no impact to this calculation after rounding the result to the nearest 

real frequency interval, as Chen et al. (2008) suggest. To confirm that the choice of 

packets used to calculate frequency is arbitrary, we calculated (Tj - Ti) / (tj-ti) for every 

j>i>0. These calculations also have no impact to the frequency calculation. For our 

Linux configurations we compare our result to the actual operating systems’ clock 

frequency configuration by looking at the kernel configuration file. We do not do this for 

our Windows configurations because, to our knowledge, this information is not 

accessible within Windows. Table 12 summarizes our frequency results.  
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Table 12.   Frequency Results 
Operating 

System 
Calculated Frequency (Hz) 

(Tlast - T0) / (tlast - t0) 
Calculated 

Frequency (Hz) 
(Tj - Ti) / (tj-ti) 

Reported Host 
TCP Clock 

Frequency (Hz) 
[F] 1000 1000 1000 
[W] 100 100 N/A 
[X] 250 250 250 

[RT] 250 250 250 
 

3. Observation 3: MSE[A] ≠ MSE[B] (for all A≠B, except [RT]) 

Chen et al. (2008) observe different MSE behaviors for Windows running on bare 

metal and for Linux running on bare metal. They did not record a bare metal MSE value 

for Xen’s Dom0. Chen et al. (2008) found the MSE value for bare metal Windows is very 

high, attributing this to that configuration yielding the lowest measured frequency value 

(10Hz) among all target configurations. Our results match Chen’s as illustrated in Table 

13. Excluding [RT] configurations, all our bare metal configurations exhibit dissimilar 

MSE behavior. In agreement with Chen et al.’s observations, our [W] configuration has 

the highest MSE value, possibly due to its low clock frequency compared to that of other 

configurations (see Table 13).  

Table 13.   Bare Metal MSEs Excluding [RT] 

CONFIGURATION MSE (ms) 

[W] 8.156 

[F] 0.086 

[X] 1.427 

 

4. Observation 4: No Obvious Difference in MSE Behavior between 
Virtualized and Bare Metal Configurations 

Chen et al. (2008) conclude that virtualized hosts have “more perturbed clock 

skew behavior” than bare metal hosts which they claim is observable through MSE. Our 

results also reflect a difference between bare metal and virtualized MSE but less 

pronounced than in prior work.  
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a. Observation 4a: MSE[F/A] ≈ MSE[F] 

Chen et al. (2008) conclude that virtualized instances of Linux exhibit orders of 

magnitude larger MSE than Linux running on bare metal. In particular, their results show 

almost 300,000% change between bare metal Linux and Linux on VMWare, and 173% 

change (Chen et al., 2008)11 between bare metal Linux and Linux running on Xen. We 

find our virtualized Fedora configurations demonstrate at least one order of magnitude 

change compared to the bare metal configuration, but the changes are smaller than Chen 

et al.’s observations suggest (see Table 14).  

Table 14.   Linux MSE Results 
CONFIGURATION MSE 

(ms) 
DIFFERENCE  

(ms) from MSE[F] 
CHANGE  

% from MSE[F] 
[F] 0.086 - - 
[F/F] 0.221 -0.134 -156% 
[F/W] 0.756 -0.67 779% 
[F/X] 1.586 -1.5 -1744% 

 

b. Observation 4b: MSE[W/A] ≈ MSE[W] 

Chen et al. (2008) find noticeable differences in MSE behavior among virtualized 

and bare metal Windows configurations. In particular, they observe a 22% change 

between bare metal Windows and Windows running on VMWare and an 8% change 

between bare metal Windows and Windows running on Xen. Chen et al. (2008) claim 

these changes are statistically meaningful under Z-test analysis, making “the randomness 

introduced by VMM very obvious.” We find, however that there is not a substantial 

difference between [W] and its virtualized counterparts ([W/W], [W/F], [W/X]) in terms 

of MSE. In fact, comparing [W] with [W/W], changes in MSE behavior appears fairly 

negligible (see Table 15).  

 

 

11 See 0.083 ms2 MSE for baseline Linux and 245.8 ms2 MSE for Linux on VMWare; we calculate 
difference as ((0.083-245.8)/0.083)*100. 
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Table 15.   Windows Configuration MSEs 

CONFIGURATION MSE 
(ms) 

DIFFERENCE  
(ms) from MSE[W] 

CHANGE  
% from MSE[W] 

[W] 8.156 - - 
[W/W] 8.066 0.09 1.1% 
[W/F] 6.873 1.283 15.7% 
[W/X] 8.658 -0.502 -6% 

 

5. Observation 5: MSE[A/F] ≠ MSE[A/W] 

Chen et al. (2008) do not clarify what configuration of VMWare they use in their 

experiment and do not comment on any difference in behavior of VMWare on Windows 

vs. VMWare on Linux. We find that configurations [A/W] and [A/F] appear different in 

terms of MSE, suggesting that the host OS for VMWare Workstation impacts 

fingerprinting substantially (see Table 16). 

Table 16.   MSE[A/W] vs. MSE[A/F] 
[A/W] 

CONFIGURATION 
MSE (ms) [A/F] 

CONFIGURATION 
MSE (ms) 

[F/W] 0.756 [F/F] 0.221 

[W/W] 8.066 [W/F] 6.873 

 

6. Observation 6: MSE[A/X] > {MSE[A/F], MSE[A/W], MSE[A]} for all 
A ≠ [RT] 

Chen et al. (2008) observe that Windows on Xen and Linux on Xen exhibit 

smaller MSE values than Linux on VMWare and Windows on VMWare. They suggest 

“Xen introduces much less randomness than VMWare does, probably because they have 

different algorithms for firing software interrupts.” In contrast, we observe [F/X] 

demonstrates higher MSE than [F], [F/W] or [F/F] (see Table 14); also, [W/X] 

demonstrates higher MSE than [W], [W/W] or [W/F] (see Table 15). This contradicts 

Chen et al.’s observations that Xen introduces less randomness than VMWare. It is, 

however, in-line with their larger observation that one can observe MSE differences 

among hypervisors, albeit somewhat more limited.  
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7. Observation 7: MSE[RT] ≠ MSE[A] for all A ≠ RT 

We extend the prior work of Chen et al. (2008) to consider fingerprinting an 

RTOS. Our [RT] configuration’s MSE value is different from the MSE values of other 

bare metal configurations as illustrated in Table 17. This result agrees with our findings 

in Observation 3; i.e., that bare metal configuration MSE behaviors are dissimilar from 

one another.  

Table 17.   Bare Metal MSE with [RT] Configuration 

CONFIGURATION Calculated MSE (ms) 

[W] 8.156 

[F] 0.086 

[X] 1.427 

[RT] 1.337 

 

8. Observation 8: MSE[RT] ≈ MSE[RT/F] ≈ MSE[RT/W] ≈ MSE[RT/X] 

We observe that, relative to configuration [RT], its virtualized counterparts 

demonstrate the lowest MSE difference among all our virtualized configurations. When 

these differences are translated into percentages however, it appears that virtualized 

instances of [RT] do not display any substantial change compared to other [RT/A] 

configurations. Table 18 summarizes our findings with the [RT] configuration i.e., using 

sshd’s default service priority12 and the default scheduling policy, Linux Completely Fair 

Scheduler (SCHED_NORMAL). This observation agrees with Observation 4, where we 

find no obvious difference between [A] configurations and their [A/B] counterparts, 

contrary to Chen et al.’s findings.  

 

 

 

12 Default priority is 0 since there is no prioritization associated with SCHED_NORMAL, which is the 
default universal time-sharing scheduler policy in our configuration.   
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Table 18.   PREEMPT_RT Configuration MSEs 

CONFIGURATION MSE DIFFERENCE  
(ms) from MSE[RT] 

% CHANGE  
from MSE[RT] 

[RT] 1.337 - - 
[RT/F] 1.395 -0.058 -4.3% 
[RT/W] 1.788 -0.451 -34% 
[RT/X] 1.297 0.04 2.99% 

 

9. Observation 9: MSE[RT] ≈ MSE[RT-1FF] ≈ MSE[RT-1RR] 

We observe differences in MSE behavior when altering the PREEMPT_RT 

configuration in terms of target service priority and scheduling policy (Round Robin vs. 

FIFO).  

For configuration [RT-1FF], we make the following two changes: we adjust the 

priority of sshd using the chrt command to be priority 1, i.e., the highest process priority 

level; we change the scheduling class to FIFO. For configuration [RT-1RR] we make the 

same changes but use Round Robin scheduling class instead of FIFO. We find these [RT-

S] configurations have similar MSE behavior relative to our [RT] configuration. Table 19 

summarizes our findings for the FIFO configurations and Table 20 summarizes our 

findings for the Round Robin configurations.  

Table 19.   PREEMPT_RT with sshd Priority 1, FIFO Scheduling Class 

CONFIGURATION MSE DIFFERENCE  
(ms) from MSE[RT-1FF] 

%CHANGE  
from MSE[RT-1FF] 

[RT-1FF] 1.387 - - 
[RT-1FF/F] 1.343 0.044 3.17% 
[RT-1FF/W] 12.669 -11.282 -813% 
[RT-1FF/X] 1.343 0.044 3.17% 

Table 20.   PREEMPT_RT with sshd Priority 1, Round-Robin Scheduling Class 

CONFIGURATION MSE DIFFERENCE  
(ms) from MSE[RT-1RR] 

% CHANGE  
from MSE[RT-1RR] 

[RT-1RR] 1.315 - - 
[RT-1RR/F]  1.404 -0.089 -6.7% 
[RT-1RR/W] 11.349 -10.034 -763% 
[RT-1RR/X] 1.317 -0.002 -0.15% 
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10. Observation 10: MSE[RT-S/W] > {MSE[RT], MSE[RT-T], 
MSE[RT/A]} 

We observe our [RT-S/W] configurations result in a much higher MSE than all 

other [RT] configurations, indicating that Windows 7 has an impact on our [RT] 

configuration when scheduling class and process priority are altered. Table 21 lists MSEs 

for other configurations not listed in Tables 19 and 20 as points of comparison.  

Table 21.   MSE[RT-S/W] vs. other MSE[RT] Configurations 

CONFIGURATION MSE (ms) 

[RT-1FF/W] 12.669 

[RT-1RR/W] 11.349 

[RT] 1.337 

[RT/W] 1.788 

[RT/F] 1.395 

[RT/X] 1.297 

 

11. Observation 11: MSE[RT-S/A] ≈ MSE[RT-T] ≈ MSE[RT] for A ≠ W 

We observe that, aside from our [RT-S/W] configurations, MSE for [RT-S/A] are 

similar to both [RT] and [RT-S] configurations. This observation agrees with 

Observations 4, 8 and 9. Continuing the trend in Observations 4 and 8, we see no obvious 

difference in MSE between [RT-S/A] and [RT-S]. Combined with Observation 9 on the 

similarity between [RT-S] and [RT-T], this implies the similarity in MSE for all 

configurations [RT-S/A] compared to [RT] (see Tables 19, 20 and 21). 

12. Observation 12: MSE[RT-S/A] ≈ MSE[RT-T/B] for A, B ≠ W 

We observe that, aside from our [RT-S/W] configurations, the MSE behavior for 

all virtualized [RT-T] configurations is similar. In fact, our results show identical MSE 

for [RT-1FF/X] and [RT-1FF/F] (see Tables 19, 20 and 21). 
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13. Observation 13: [AlB] is more like [A) than [B) for A f:. B and Af:.F 

Chen et al. (2008) do not rep01i MSE comparing the virtualized guest and its bare 

metal host. We extend this work by investigating which MSE viliualized guests most 

closely resemble. We find that (with the exception of om [FIB] configmations) all [AlB] 

configurations more closely resemble the MSE of [A] instead of [B]. Table 22 

summarizes om findings. 

Table 22. MSE Comparisons (Blue Indicates Most Similar MSE Based on %) 

DIFFERENCE 
DIFFERENCE 

DIFFERENCE 
DIFFERENCE (ms) /CHANGE (ms) 
(ms) /CHANGE /CHANGE 

CONFIG MSE from MSE[W] 
(%) from MSE[F] 

(%) from MSE 
(%) from MSE 

[X] 
[RT] 

(ms) % (ms) % (ms) % (ms) % 

[FIW] 0.756 7.404 90.780 -0.670 -779.068 - - - -
[FIX] 1.586 - - -1.500 -1744.186 -0.166 -1 1.638 - -
[W/F] 6.873 1 287 15.780 -6.787 -7891.860 - - - -
[W/X] 8.658 -0.498 -6.106 - - -7.238 -509.218 - -
[RT/F] 1395 - - -1309 -1522.093 - - -0.058 -4.338 

[RT/W] 1.788 6 372 78.127 - - - - -0.451 -33.732 

E. DISCUSSION 

The pmpose of om study is to replicate the work of Chen et al. (2008) to 

investigate if their observations appear relatively stable, and generalize to real-time 

systems under viliualization. Overall, om experiments show that fmge1printing behavior 

of VMWare Workstation guests is dependent on the underlying host operating system. 

Om work also shows that when using MSE as a metric to compare viliualized operating 

systems, there is no easily observable difference between operating systems nmning on 

different hypervisors. 

As with Chen et al. (2008), om work suggests there is a strong correlation 

between an operating system's TCP clock frequency and its finge1p rint. Operating 

systems with lower frequency values (e.g., Windows) have higher MSE values and lower 

percentages of difference between baseline and experitnental MSE values. Operating 
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systems with higher frequency values (e.g., Fedora) have lower MSE values and high 

percentages of difference between baseline and experimental MSE values.  

Our work also reveals some interesting behavior of virtualized operating systems, 

particularly in the [RT-1FF/W] and [RT-1RR/W] configurations. The MSE behavior for 

these configurations is dramatically different from [RT], [RT-S] and [RT-T/A] 

configurations. Of note is the observation that only the [F/F] and [F/W] configurations 

have MSE behavior that more closely resembled the host OS instead of the guest. We 

investigate the reason for this behavior as future work.  

There are several limitations to our experiment that may have impacted the 

generality of our results. Our setup lacked extraneous network and CPU load, as host and 

guest had limited background processes running and had exclusive use of a local 

network. As future work, these experiments may be re-run on a typical network for an 

enterprise or in a setting with multiple processes competing for CPU time to see if the 

results change. We also do not run our experiments on multiple physical machine 

profiles. To confirm the generality of our observed behaviors one would re-run these 

experiments on different physical machine profiles, i.e., to investigate how much TCP 

timestamp skew variation can be attributed to the operating system and how much can be 

attributed to the hardware. Also, all the tested virtualized configurations are based on full 

virtualization. We suggest re-running our tests with different virtualization settings, such 

as paravirtualization and hardware-assisted virtualization to see how MSE behavior 

compares.  

A possible limitation of our work is the use of tcpdump to label time of receipt for 

each TCP packet at the sniffer machine. We suggest re-running these experiment to 

employ a system clock timestamp, rather than relying on a user-land application’s 

perception of time. Our experiment could also benefit if the operating system choices 

were more consistent. We chose a different version of Linux with a different frequency to 

run our Xen Dom0 ([X] configuration) compared to our other Linux configurations. We 

suggest standardizing these software choices for consistency and comparison. We further 

suggest experimenting with different Linux distributions and different kernel versions. It 

would be interesting to see how our results compare to newer operating systems. Finally, 
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additional research should consider statistical metrics for comparison to see if they offer 

more insight into the behavior of different hypervisors and virtualized operating systems 

in the context of fingerprinting.  

Our work is an attempt to capture the TCP timestamp skew behavior of a set of 

general-purpose and real-time operating systems in an isolated, controlled environment. 

Our results differ from Chen et al. (2008) and suggest that hypervisor and operating 

system fingerprinting is not clearly predictable from MSE. We propose some future work 

to carry this research forward.  
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VI. CONCLUSION AND FUTURE WORK 

Virtualization is a promising field of research for the space community, and its 

implementation in space research projects indicates that it is a technology that the space 

community appears committed to utilizing. In this thesis we have sought to highlight 

some key security-relevant properties of real-time operating systems and virtualization 

architectures for space systems. Our work has revealed the diversity of architectures 

supporting virtualized for the space domain, and the ways in which these virtualization 

architectures handle real-time requirements of guests. Our work highlights some tradeoffs 

associated with security, flexibility, popularity and compatibility with other systems and 

hardware. The purpose of our survey was to explain, at a high level, the fundamental 

differences and similarities between real-time operating systems and virtualization 

solutions for space. A limitation of this survey was that we did not analyze the 

implementation of consequential security features in the surveyed systems. We leave as 

future work the analysis of enforcement mechanisms for key security functionality, such 

as memory management or spatial isolation. For unevaluated systems, penetration testing 

may be warranted to investigate these security properties.  

We have also presented an experimental investigation of remote fingerprinting 

based TCP timestamp skew for virtualized operating systems. This extended prior work, 

considering timestamp skew behavior for the Linux PREEMPT_RT patch running on 

bare metal, on Xen and on VMWare Workstation. We suggest (see Chapter V) 

continuation of this work is warranted, by re-running experiments on a public network, 

on different hardware, with different virtualization setttings etc. We also leave as future 

work the inclusion of other real-time operating systems in this evaluation, such as 

RTEMS and FreeRTOS, as well as alternative virtualization platforms such as XtratuM 

and NOVA and others surveyed in this thesis.  
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APPENDIX A.  BARE METAL, 1.5-HOUR RUN 

In this appendix, we provide data associated with experiments discussed in 

Chapter V. Figures 28–31 show the results of experiments with bare metal configurations 

([F], [X], [W], [RT]) after 1.5-hour packet capture. 

 
Figure 28.  Configuration [F], Skew vs. Time, 1.5 Hour Packet Capture 

 
Figure 29.  Configuration [X], Skew vs. Time, 1.5 Hour Packet Capture 
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Figure 30.  Configuration [W], Skew vs. Time, 1.5 hour Packet Capture 

 
Figure 31.  Configuration [RT], Skew vs. Time, 1.5 Hour Packet Capture  
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APPENDIX B.  BARE METAL, 10-MINUTE RUN 

In this appendix, we provide data associated with experiments discussed in 

Chapter V. Figures 32–35 show the results of experiments with bare metal configurations 

([F], [X], [W], [RT]) after 10-minute packet capture. 

 
Figure 32.  Configuration [F], Skew vs. Time, 10-Minute Packet Capture 

 
Figure 33.  Configuration [X], Skew vs. Time, 10-Minute Packet Capture 
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Figure 34.  Configuration [W], Skew vs. Time, 10-Minute Packet Capture 

 
Figure 35.  Configuration [RT], Skew vs. Time, 10-Minute Packet Capture 
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APPENDIX C.  VIRTUALIZED LINUX 

In this appendix, we provide data associated with experiments discussed in 

Chapter V. Figures 36–38 show the results of experiments with virtualized Linux 

configurations ([F/F], [F/W], [F/X]). 

 
Figure 36.  Configuration [F/F], Skew vs. Time 

 
Figure 37.  Configuration [F/W], Skew vs. Time 
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Figure 38.  Configuration [F/X], Skew vs. Time 
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APPENDIX D.  VIRTUALIZED WINDOWS 

In this appendix, we provide data associated with experiments discussed in 

Chapter V. Figures 39–41 show the results of experiments with virtualized Windows 

configurations ([W/F], [W/W], [W/X]). 

 
Figure 39.  Configuration [W/F], Skew vs. Time 

 
Figure 40.  Configuration [W/W], Skew vs. Time 

 99 



 

 
 
 
 
 
 
 
 
 
 

 
Figure 41.  Configuration [W/X], Skew vs. Time 
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APPENDIX E.  VIRTUALIZED PREEMPT_RT 

In this appendix, we provide data associated with experiments discussed in 

Chapter V. Figures 42–44 show the results of experiments with virtualized 

PREEMPT_RT configurations ([RT/F], [RT/W], [RT/X]). 

 
Figure 42.  Configuration [RT/F], Skew vs. Time 

 
Figure 43.  Configuration [RT/W], Skew vs. Time 
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Figure 44.  Configuration [RT/X], Skew vs. Time 
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APPENDIX F.  PREEMPT_RT, FIFO SCHEDULING 

In this appendix, we provide data associated with experiments discussed in 

Chapter V. Figures 45–48 show the results of experiments with PREEMPT_RT with 

FIFO scheduling and sshd priority 1 ([RT-1FF], [RT-1FF/F], [RT-1FF/W], [RT-1FF/X]). 

 
Figure 45.  Configuration [RT-1FF], Skew vs. Time 

 
Figure 46.  Configuration [RT-1FF/F], Skew vs. Time 
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Figure 47.  Configuration [RT-1FF/W], Skew vs. Time 

 
Figure 48.  Configuration [RT-1FF/X], Skew vs. Time 
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APPENDIX G.  PREEMPT_RT, ROUND ROBIN SCHEDULING 

In this appendix, we provide data associated with experiments discussed in 

Chapter V. Figures 49–52 show the results of experiments with PREEMPT_RT with 

round robin scheduling and sshd priority 1 ([RT-1RR], [RT-1RR/F], [RT-1RR/W], [RT-

1RR/X]). 

 
Figure 49.  Configuration [RT-1RR], Skew vs. Time 

 
Figure 50.  Configuration [RT-1RR/F], skew vs. time 
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Figure 51.  Configuration [RT-1RR/W], Skew vs. Time 

 
Figure 52.  Configuration [RT-1RR/X], Skew vs. Time 
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SUPPLEMENTAL 

Code to run the experiment and generated data from Chapter V is available in the 

CISR Archive, which may be accessed at the Computer Science Department of the Naval 

Postgraduate School.  
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